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ABSTRACT 
 

This document describes techniques for fre-

quency stability analysis using as their basis the 

R program for statistical computing and 

graphics.  It describes how R can be used for 

quantifying the stability of a frequency source in 

the time and frequency domains, providing in-

formation about practical methods for conduct-

ing such an analysis, including an R package of 

functions for that purpose. 

 

1 INTRODUCTION 
 

R is a programming language and free software 

environment for statistical computing and 

graphics supported by the R Foundation for Sta-

tistical Computing
1
.  It runs on a large number 

of UNIX/Linux, Windows and MacOS plat-

forms.  C/C++ and Fortran programs can be 

linked for speed and efficiency.  Much useful 

information about the R language and its pro-

gramming environment will be found in Refer-

ence [3]
2
. 

 

Why would someone want to use R for frequen-

cy stability analysis rather than, say, a special-

purpose tool like the comprehensive and freely-

                                                 
1
 R Development Core Team (2010). R: A language and 

environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. ISBN 3-900051-

07-0, URL http://www.R-project.org. 
2
 This document refers to the original 2007 version which 

is available as a free download (see [3]). 

available Stable32
3
 program?  Perhaps to allow 

greater flexibility and support experimentation 

with the underlying algorithms, or to generate 

plainer graphical results more suited for publica-

tion and presentations.  The R computing envi-

ronment is better suited to performing specific, 

perhaps customized, functions rather than sup-

porting a large integrated application.  The R 

console resembles the UNIX command line, 

with small, tersely-named, single-purpose func-

tions.  Larger functions can easily be built by 

combining them on-screen or in a script.  The 

programming environment resembles a C or Py-

thon interpreter, with easy variable handling and 

memory management, which encourages calcu-

lator-like experimentation and testing.  RStudio  

is available as a GUI R programming environ-

ment.  

 

R has become somewhat of a standard for gen-

eral-purpose and academic statistical analysis, is 

free, and is well-supported, including many ad-

ditional packages.  But, except for basic Allan 

variance functions (see Section 3.1 below), 

those do not directly support frequency stability 

analysis.  This paper will (hopefully) improve 

that.  Related R spectral analysis functionality is 

available in Reference [2] and its supporting R 

code
4
. 

                                                 
3
 The Stable32 program and its documentation is freely 

available from the International Electrical and Electronic 

Engineers (IEEE) Ultrasonics, Ferroelectrics, and Fre-

quency Control (UFFC) Society at: https://ieee-

uffc.org/frequency-control/frequency-control-

software/stable32/. 
4
 See: http://faculty.washington.edu/dbp/sauts.html 

mailto:bill@wriley.com
http://www.r-project.org/
https://rstudio.com/
https://ieee-uffc.org/frequency-control/frequency-control-software/stable32/
https://ieee-uffc.org/frequency-control/frequency-control-software/stable32/
https://ieee-uffc.org/frequency-control/frequency-control-software/stable32/
http://faculty.washington.edu/dbp/sauts.html
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1.1 Getting Started with R 
 

This document is not intended as a tutorial on R.  

We will simply say that one should start by 

downloading and installing the R software 

package from www.R-project.org, and consult 

the material there along with other on-line 

sources and books (such as Reference [3] to the 

extent needed.  If you already have R installed, 

it is recommended that you re-install the latest 

version.  Then, if new to R, one can try com-

mands to start to become familiar with it. 

 

We will not describe a complete R package of 

functions for frequency stability analysis (alt-

hough such a collection would be desirable), but 

rather simply show a number of individual func-

tions for certain key operations.  The R envi-

ronment favors the use of many small single-

purpose functions, and you can build up a col-

lection of those to suit you specific needs. 

 

We show R commands in red as in the default R 

console. 

 

1.2 R Examples 
 

The examples of R code herein use R 4.0.0 un-

der Windows and are intended to illustrate its 

use for frequency stability analysis. 

 

Make sure that you have full read/write permis-

sion to the R library folder on your computer.  

Packages can then be installed and loaded using 

the Packages/Install package(s)… and Load 

package… menu items.  The following packag-

es should be installed and loaded for the exer-

cises herein: 

  ‘RobPer’ (for TK95())  

 ‘sazedR’ (for downsample()) 

 ‘allanvar’ (for Allan variance, etc.) 

 ‘avar’ (for Allan variance) 

 ‘zoo’ (for rollapply()) 

 ‘fsa’ (see Appendix 6) 

 

1.3 R Frequency Stability Analysis 
 

This document is intended to introduce a fre-

quency stability analyst to the use of R for that 

purpose.  It leads a new R analyst through a 

number of examples emphasizing analysis tech-

niques rather than program operation.  A key 

aspect of the tutorial is the ability to generate 

power law noise as test data to use for exploring 

the various analysis methods. 

 

This document contains basic information about 

some aspects of frequency stability analysis, 

with references to further details (e.g., the 

math), principally the Reference [5] Handbook 

of Frequency Stability Analysis.  Examples are 

included for some topics to stimulate further 

study.  It is recommended that, after reading 

about a topic in this document, the reader con-

sult the referenced section of the Handbook, the 

references cited herein, and then their refer-

enced documents as you get deeper into these 

subjects. 

 

Most analysts who use the techniques of fre-

quency stability analysis have frequency sources 

they wish to characterize and measuring systems 

for doing so.  But all users of precision frequen-

cy sources need to understand those techniques, 

and hands-on experience with them, using actu-

al or simulated data, is the best way to become 

familiar with them. 

 

2 TIME SERIES ANALYSIS 
 

Frequency stability analysis is an example of 

time series analysis which applies statistical 

measures to describe the properties of a time- 

ordered set of data, in this case usually either 

phase data in seconds or dimensionless fraction-

al frequency deviations.  The analyses can be 

performed in either the time or frequency do-

main.  Chapter 22 of The R Book is concerned 

with Time Series Analysis. 

 

The field of time series analysis is very broad 

and well-established, and an internet search will 

produce a vast amount of material.  In the case 

of frequency source (“oscillator”, “frequency 

standard” or “clock”) characterization one is 

typically concerned with describing a finite 

sample of clock data for average frequency, 

slow trends (“drift” and “aging”) and shorter-

term noise-like fluctuations.  The latter are often 

described in the time domain by variances and 

http://www.r-project.org/
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in the frequency domain by spectral densities.  

More specifically, there are specialized statisti-

cal variances (e.g., the Allan variance, AVAR) 

and spectral density types (e.g., the SSB phase 

noise, L(f), dBc/Hz) that have been developed 

for frequency stability analysis.  Those 

measures can be implemented by extensions to 

the basic R package. 

 

Frequency stability analysis generally applies to 

equally-spaced discrete phase or frequency 

measurements (a time series) taken at a particu-

lar measurement interval denoted by the lower-

case Greek letter tau (). Other words used for 

this quantity are sampling interval, measure-

ment time, sampling time or averaging time. The 

measurement and sampling terms are usually 

associated with the measurement process itself, 

while the averaging time applies to the analysis. 

The basic measurement interval is often denoted 

as 0 while the analysis averaging time is simply 

called .  As noted above, phase data have units 

of seconds, while frequency data are dimension-

less
5
 fractional frequency. 

 

Fractional frequency data can be converted to a 

longer sampling time by arithmetic averaging.  

That averaging can be performed by a function 

similar to downsample() in the ‘sazedR’ 

package
6
: 

 

favg<-function(data,af=2) 

+ { 

+ return(rollapply(data,width=af, 

+ by=af,FUN=mean)) 

+ } 
 

For example: 
 

>y<-1:20 

>y 

[1]  1  2  3  4  5  6  7  8  9 10 11 

12 13 14 15 16 17 18 19 20 

> w<-favg(y, 4) 

> w 

2.5  6.5 10.5 14.5 18.5 
 

The function returns the averaged frequency 

points. 

 

                                                 
5 Units of Hz/Hz are sometimes associated with fractional 

frequency values, but that seems rather awkward. 
6
See: 

https://www.google.com/search?q=package%20sazedR 

Similarly, phase data can be converted to a 

longer sampling time by downsampling (omit-

ting intermediate points).  That downsampling 

can be accomplished by another downsample() 

function
7
: 

 

> pavg<-function(x,af) 

+ {  

+ seed<-c(TRUE,rep(FALSE,af-1)) 

+ cont<- 

+ rep(seed,ceiling(length(x)/af)) 

+ [1:length(x)] 

+ return(x[which(cont)])  

+ } 

> x 

 [1]  1  2  3  4  5  6  7  8  9 10 11 

12 13 14 15 16 17 18 19 20 

> pavg(x,3) 

[1]  1  4  7 10 13 16 19 

 

2.1 Clock Data 
 

The data for analyzing the stability of a frequen-

cy source is a time series comprising a set of 

equally-spaced phase (time) or fractional fre-

quency values at some sampling time tau.  The-

se data are often accompanied by timetags
8
.  

Phase data is generally preferred, and can be 

converted to fractional frequency data by their 

1
st
 differences divided by tau.  Conversely, frac-

tional frequency data can be converted to phase 

data (with an arbitrary constant, generally zero) 

by numerical integration.  Those conversions 

can be performed quite simply in R code, e.g., 

freq=diff(phase)/tau and phase=   

diffinv(freq)*tau.  For example: 

 
> diff(c(2,3,5,18,4,6,4)) 

[1]   1   2  13 -14   2  -2 

> diffinv(c(1,2,13,-14,2,-2)) 

[1]  0  1  3 16  2  4  2 

 

where the latter values differ from the original 

ones by the constant 2. 

                                                 
7
See:http://evertqin.blogspot.com/2011/03/simple-

downsample-function-for-vectors.html 
8
 Modified Julian Data (MJD) timetags are commonly 

used for time and frequency data, usually including a frac-

tional part having a 1-second resolution.  

https://www.google.com/search?q=package%20sazedR
http://evertqin.blogspot.com/2011/03/simple-downsample-function-for-vectors.html
http://evertqin.blogspot.com/2011/03/simple-downsample-function-for-vectors.html
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2.2 Power Law Noise 
 

The phase and frequency fluctuations of a fre-

quency source can often be well-described by 

one or more power law noise processes having a 

spectral characteristic of S(f)=hf

 where  is 

the (usually integer) power law exponent rang-

ing from -2 to +2 for noise processes from Ran-

dom Walk FM through White PM  (see Figure 

1. 

 

  
White Flicker 

  
Flicker+RW Random Walk 

 

Figure 1.  Common Types of Power Law Noise 
 

The various noise types can apply to either phase or fre-

quency data.  Note that power law noise doesn’t neces-

sarily have to have an integer exponent – mixtures of 

noise types are possible. 
 

 

Because the white, flicker, and random walk 

noise types can apply to either phase or frequen-

cy data, these three noise types, along with 

phase-frequency conversions, will cover all five 

common noises.  Note that those conversions 

change the exponent by 2, and that W FM noise 

is the same as RW PM (both . 

 

2.3 Power Law Noise Simulation 
 

It is frequently useful to simulate a set of power 

law noise as an analysis sample or to model a 

frequency source.  There are several ways to 

accomplish this, and, in R, one is provided by 

the TK95(N, alpha) function of the CRAN 

‘RobPer” package
9
 based on the power law 

noise generation method of Reference [6].  Note 

that the alpha argument has the opposite sign as 

the symbol  is commonly used for frequency 

stability analysis(see Table 1): 

                                                 
9
 See: 

https://repo.bppt.go.id/cran/web/packages/RobPer/RobPer

.pdf. 

 

Table 1.  TK95() Power Law Noise Generation 

Noise Type Color  TK95 

alpha Phase Freq 

White White 2 0 0 

Flicker Pink 1 -1 1 

Random Walk Brown 0 -2 2 

 

For example, 2000 points of simulated flicker 

noise can be generated and plotted (see Figure 

2) with the commands
10

: 
 

> #Generate power law noise with expo 

+ nent alpha=1.0 

> y<-TK95(N=2000, alpha=1.0) 

> t<-seq(along=y) 

> #Show time series: 

> plot(t,y,type="l",main="Power Law  

+ Noise",xlab="t",ylab="y") 

 

 

Figure 2.  Simulated Flicker Noise 

 

The noise exponent need not be an integer, and 

the “colored” noise can be considered to be ei-

ther phase or frequency data.  The resulting 

noise is only close to having a zero mean and its 

variance is not known, so these attributes have 

to be adjusted and scaled as desired (for exam-

ple, =-0.866 and y(1)=33.07 for the above per 

the Stable32 Statistics screen of Figure 3. 

 

                                                 
10

 Watch out for ” (NG) versus " (OK) quotes in R code. 
 

https://repo.bppt.go.id/cran/web/packages/RobPer/RobPer.pdf
https://repo.bppt.go.id/cran/web/packages/RobPer/RobPer.pdf
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Figure 3.  Statistics for Simulated F FM Noise 

 

For the following examples, it is useful to gen-

erate and save a set of 5 power law noise data 

files each containing 4096 points of the noise 

types and file names shown in Table 2: 

 

Table 2.  Power Law Noise Data Files 

Data Type Noise Type  File Name 

Phase White PM +2 W_PM.dat 

Flicker PM +1 F_PM.dat 

Frequency White FM 0 W_FM.dat 

Flicker FM -1 F_FM.dat 

RW FM -2 RW_FM.dat 

 

The generated flicker PM data can be saved to 

disk with the following command: 
 

> write(y,"C:\\Data\\F_PM.dat",1) 

 

A complete function to generate a certain num-

ber of points of noise having a certain power 

law exponent, zero mean and a certain Allan 

vaniance (see Appendix 1) would call TK95(), 

calculate its ADEV, scale it accordingly and 

then remove its average value. 

 

2.4 Data Plots 
 

Data plots are an important analysis tool.  The 

default R data plot format using simply 

plot(x) produces a very reasonable result and 

is quite adequate for general purposes, produc-

ing an x-y scatter plot with points denoted by 

circles as shown in Figure 5. 

 
Figure 4.  Scatter Style Plot 

 

But better formatting is also quite easy.  One 

improvement (see Figure 5) is to use lines with-

out points for phase data, plot(x,type="l"), 

and steps for frequency data (see Figure 6), 

plot(y,type="s"), to indicate that they rep-

resent an average over the tau interval, and to 

distinguish the two (at least when there are rela-

tively few points): 

 
Figure 5.  Line Style Plot 

 
Figure 6.  Step Style Plot 

 

Many fancier plotting options are available, es-

pecially for presentation graphics. 
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3 TIME DOMAIN 

FREQUENCY STABILITY 

MEASURES 
 

The main measures of domain frequency stabil-

ity in the time domain are a number of special-

ized variances designed to handle divergent 

noise types (the standard variance doesn’t con-

verge for <0), distinguish between white and 

flicker PM noise, ignore linear frequency drift, 

provide higher confidence and support larger 

averaging factors.  These statistics are described 

in Reference [5]. 

 

3.1 Allan Variance 
 

The Allan variance, AVAR, (and its square root, 

the Allan deviation, ADEV) is the most com-

mon time domain measure of frequency stabil-

ity.  Its calculation is supported in R by the Al-

lan Variance Analysis ‘allanvar’ package
11

 that 

is freely-available under the GPL-2 license
12

 in 

the CRAN
13

 repository.  This package contains 

several functions for calculating and plotting 

ADEV, with an emphasis on describing sensors 

and gyros.  A sample ADEV calculation and 

plot
14

 is shown in Figure 7. 

 
library(allanvar) 

#Load data  

data(gyroz) 

#Allan variance computation using avar 

avgyroz <- avar(gyroz@.Data, frequen-

cy(gyroz)) 

plotav(avgyroz) 

 

                                                 
11

 See:   http://www2.uaem.mx/r-

mirror/web/packages/allanvar/allanvar.pdf . 
12

 See Wikipedia: GNU General Public License. 
13

 Comprehensive R Archive Network. 
14

 See: https://rdrr.io/cran/allanvar/man/plotav.html. 

 
Figure 7. allanvar Calculation and Plot 

 

The “avar” package
15

 also provides several Al-

lan variance-related functions, as shown in Fig-

ure 8.  Its emphasis is also on sensors and gyros.  

In particular, the avar() function implements the 

overlapping AVAR for frequency data, and the 

avari() function does so for phase data.  Those 

functions perform a full AVAR run at octave-

spaced points, and show the results in a table 

along with the associated error bars.  Note that 

one must take the square root of the displayed 

av values to obtain the ADEV.  The ‘allanvar’ 

demo is shown in Appendix 1. 

 

 
 

Figure 8. avar Calculation and Plot 

                                                 
15

 See: https://cran.r-

project.org/web/packages/avar/avar.pdf. 

http://www2.uaem.mx/r-mirror/web/packages/allanvar/allanvar.pdf
http://www2.uaem.mx/r-mirror/web/packages/allanvar/allanvar.pdf
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://rdrr.io/cran/allanvar/man/plotav.html
https://cran.r-project.org/web/packages/avar/avar.pdf
https://cran.r-project.org/web/packages/avar/avar.pdf
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This plot includes a very nice display of the 

ADEV confidence limits. 

 

In considering the Allan (and related) variances 

one needs to keep in mind the following: 
 

1. Several types of variance are used for fre-

quency stability analysis, as follows: 

 Allan Variance, AVAR 

 Modified Allan Variance, MVAR 

 Time Variance, TVAR 

 Hadamard Variance, HVAR 

 Total Variance, TVAR 

 Theo1 

2. One should distinguish between a variance 

(e.g., AVAR) and its square root, a deviation 

(e.g., ADEV).  The former is often used in a 

general sense, while the latter is almost al-

ways the form actually used. 

3. One should distinguish between the ex-

pected value of statistics like AVAR and the 

computational means used to estimate them.  

For example, one can estimate AVAR with 

either non-overlapping or overlapping sam-

ples, where the latter is generally preferred 

because of its higher confidence. 

4. The confidence level of a statistic (its error 

bars, the range of an estimate around its 

nominal value at a certain confidence factor) 

depends on the statistic, its estimation meth-

od, the number of samples used for the esti-

mate, and the properties of the data (noise) 

used in the estimation. 

5. The confidence level of an estimate of a var-

iance is generally based on the number of 

equivalent Χ
2 

degrees of freedom that apply, 

a quantity that can be determined either ana-

lytically or by Monte-Carlo simulation. 

6. Clock stability data can be in the form of 

either phase (time) variations, x(t) in units of 

seconds or dimensionless fractional frequen-

cy data, y(t) = Δf/f0 = (f – f0) / f0, where f0 is 

the nominal frequency. 

7. Since frequency is the rate of change of 

phase,  frequency data can be obtained from 

phase data by taking 1
st
 differences, while 

phase data can be obtained from frequency 

data by numerical integration. 

8. The fluctuations of a frequency source are 

often modeled as an integer power law pro-

cess in the frequency domain S(f)=hf

 

where  is the power law exponent ranging 

from -2 to +2 for noise processes from Ran-

dom Walk FM through White PM (see be-

low).  Examples of the most common noise 

types was shown in Figure 1. 

9. The power law noise exponent determines 

the slope of a log ADEV versus log tau plot 

for three common variance types as shown 

in Table 3. 

10.  Always follow R.W. Hamming’s admoni-

tion that “the purpose of computing is in-

sight, not numbers” [4]. 

 

Table 3. 

Summary of Stability Plot Noise Slopes 
 

Noise 

Type 
 Stability Plot Noise Slope 

ADEV MDEV TDEV 

W PM +2 -1 -3/2 -1/2 

F PM +1 -1 -1 0 

W FM 0 -1/2 -1/2 +1/2 

F FM -1 0 0 +1 

RW FM -2 +1/2 +1/2 +3/2 

 

3.2 Other Variances 
 

This author knows of no R packages that sup-

port other variance types such as the Modified 

and Hadamard variances.  Nor are the two Allan 

variance R packages ideal for frequency stabil-

ity analysis.  It therefore is desirable to develop 

an R package to provide a more complete suite 

of time domain frequency stability analysis 

tools, preferably written in C for speed and effi-

ciency (see Reference [7]).  We take a few steps 

toward that goal herein (see Appendices 2 and 

7). 

 

3.3 Autocorrelation 
 

R makes obtaining the autocorrelation sequence 

of a time series very easy: just type acf(z) to 

show it for time series z.  You can immediately 

see the difference between uncorrelated white 

noise and a sample of more divergent flicker or 

random walk noise as indicated by their lag 1 

autocorrelation scatter plots with 

lag.plot(z)as shown in Figure 9. 
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ACF for White Noise ACF for Flicker Noise 

r1=0.017 r1=0.808 

  
Lag 1 Scatter Plots for White and Flicker Noise 

 

Figure 9.  White and Flicker Noise 

ACF and Lag 1 Scatter Plots 

 

The lag 1 value can be used to identify the pow-

er lay noise type (see the nid() function in Ap-

pendix 2), or to show data quantization. 

 

3.4 Histograms 
 

It is occasionally helpful to examine phase or 

frequency data in a histogram.  Most such data 

is dominated by random noise having the 

familar bell-shaped Gaussian distribution as 

shown in Figure 10.  However a histogram can 

show when the data are less normal, perhaps bi-

modal or highly quantized.  It is easy to produce 

a histogram in R, simply execute hist(z), 

where z is the name of a vector of phase or fre-

quency data. 

 

 
Figure 10.  Histogram of White Gaussian Phase 

Noise 

 

4 FREQUENCY DOMAIN 

FREQUENCY STABILITY 

MEASURES 
 

The main measures of frequency stability in the 

frequency domain are a number of specialized 

power spectral densities (PSD), Sx(f), S(f), and 

L (f) for phase data and Sy(f) for frequency data. 

 

4.1 Raw Periodogram 
 

Obtaining a raw periodogram in R is as simple 

as typing spectrum(z) where z is the name of 

a time series data vector.  For example, Figure 

11 shows one for a set of phase data in se-

conds
16

: 

 

 
 

Figure 11. Raw Periodogram 

 

These data represent the nominally white PM 

noise floor of a phase measuring system, with 

an ADEV of about 1.4e-11 at their 1-second 

sampling interval.  The phase noise does indeed 

look quite white (the estimated  is +1.7) and 

the ADEV does closely follow a 
-1

 characteris-

tic.  The scale factor of the spectral intensity ap-

pears to take into account of the noise band-

width because it nearly agrees with that of the 

Figure 12 Stable32 Sx(f) plot in sec
2
/Hz.  The 

Fourier frequency scales are both 0.5 Hz full 

scale
17

. 

                                                 
16

 Note that the default spectrum() function uses a 10% 

cosine taper, so it is not entirely “raw”.  One can elimi-

nate it with taper=0 in the call; there is hardly any dif-

ference in the resulting spectrum.  
17

 The # of FFT points is probably 524,288, the next pow-

er of 2 above the # of data points, so, with the 1-second 

sampling time, the Fourier bin size is about 1.9 Hz, 

which, for a rectangular window, should also be the noise 

bandwidth.  The plot annotation is different. 
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Figure 12.  Stable32 Sx(f) Plot 

 

To further process the spectrum, we need to ex-

tract and scale the Fourier frequency and PSD 

results as numeric vectors: 
 

>  s<-spectrum(phase) 

>  freq<-s$freq 

>  psd<-2*s$spec 

 

The Fourier frequency is in cycles per sampling 

period, which, for the 1-second sampling, makes 

it in Hz.  Scaling will be needed for other sam-

pling rates.  To scale the spectrum so that its 

total area is equal to the time series variance, the 

PSD values need to be multiplied by 2
18

.  We 

can then re-plot the spectrum as desired.  For 

example: 
 

> plot(log10(freq),log10(psd), 

type=”l”) 

 

This plot (Figure 13) closely resembles the 

unwindowed Stable32 Sx(f) PSD plot.  However 

it should be noted that the spectrum() func-

tion, by default, prewhitens the time series data 

by removing any mean and linear trend before 

computing the spectrum (those are not a factor 

in this case). 
 

                                                 
18

 The mean value for the 2
nd

 half of the PSD points is 

about 2.5e-22.  The approximate area of the flat white 

noise spectrum, 2.5e-22 * 0.5 = 1.25e-22 is about equal to 

the variance of the phase noise, (1.4e-11)
2
 = 2.0e-22.  If a 

domain conversion is conducted for W PM with 

ADEV=1.4e-11, the resulting Sx(f=1 Hz)=1.3e-22 for a 

system BW=0.5 Hz.  

 
 

Figure 13.  PSD Plot with Log Scales 
 

One can eliminate the large amplitude low fre-

quency leakage-induced components as shown 

in Figure 14. 
 

plot(log10(freq[-(1:100)]), 

log10(psd[-(1:100)]), type="l") 
 

 

 
 

Figure 14.  PSD Plot with Low 

 Fourier Frequency Components Removed 

 

The Sx(f) PSD data can be converted into more 

commonly-used L (f) values using the relation  

L(f) = 10 log10[2
2
0

2
Sx(f)] in dBc/Hz where 

0 is the RF carrier frequency, as shown in Fig-

ure 15. 

 

 
Figure 15.  L(f) Plot  



 10 

Smoothed Periodogram 
 

The spectrum can be smoothed with the span 

argument of the spectrum() function.  Re-

peating the analysis with span=20 results in the 

PSD plot of Figure 16. 

 

 

 
 

Figure 16.  Smoothed Periodogram 

 

And, after reprocessing to use log plot scales, it 

is shown in Figure 17. 

 

 
 

Figure 17.  Smoothed Periodogram 

with Log Scales 

 

 

4.2 Power Spectral Density  Anal-

ysis 
 

Reference [2] contains many examples of power 

spectral analysis using R
19

, including several 

involving atomic clocks.  It describes many 

ways to make a spectral analysis have less vari-

ance (more consistency) and less bias. 

 

5 OTHER TOPICS 
 

We conclude with two miscellaneous topics.  

Timetags are often associated with phase or fre-

quency data, and they are an important way to 

document it.  Documentation is vital for any 

significant frequency stability analysis, as it also 

is for custom R functions and the R program-

ming environment in general.  

 

5.1 Timetags 
 

MJD timetags
20

 are often used with clock data, 

generally in the 1
st
 column of a row of data.  

There are lots of ways to read a 2-column data 

file with timetags.  For example: d<-

read.table("C:\\Data\\clock.dat") 

will read it into the data.frame table d, and 

mjd<-d[1] and phase<-d[2] will separate 

the timetags and data into two vectors.  One line 

of the table can be printed with d[n,] where n 

is the line #: 
> d[996,]: 

               V2                 V2 

996 58150.8244382 -9.39369201665e-12 

 

And the table data can be plotted with 

plot(d)as shown in Figure 18. 

 

                                                 
19

 R code is available for download, and can be pasted 

into the R console command line. It can be hard to make a 

snippet of code run by itself, but just looking at it can be 

very informative. 
20

 The Modified Julian Date (MJD) is based on the astro-

nomical Julian Date, the # of days since noon on January 

1, 4713 BC.  The MJD is the Julian Date - 2,400,000.5; it 

starts at zero at midnight on November 17, 1858. 
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Figure 18.  Data Plot with MJD Time Scale 

 

The mjd and phase values can be put into sepa-

rate vectors with mjd<-d[,1] and phase<-

d[,2]. 

 

The MJD timetags could be manipulated to 

show the x-scale as hours, etc. 

 

One can obtain the current MJD from the com-

puter clock with: 

 
(as.numeric(Sys.time())/86400)+ 

40587. 

 

5.2 Documentation 
 

The R program is well-documented, including 

on-line manuals and tutorials, and several 

books
21

, and the additional packages in the 

CRAN repository are generally well-

documented also.  The R help system (? fol-

lowed by a package or function name) is quite 

effective.  The R computing environment lends 

itself to creating custom functions, either in an 

ad hoc fashion or as a organized collection.  

They should usually be brief, perform a single 

operation, and have a short intuitive name
22

.  

Functions can be saved as a file and loaded with 

the source() command.  It is important to 

document your functions so that one can recall 

their purpose and arguments, perhaps following 

the format used by the CRAN repository. 

 

                                                 
21

 For example, The R Book. 
22

 See: https://nicercode.github.io/guides/functions/ 

6 AN R PACKAGE FOR 

FREQUENCY STABILITY 

ANALYSIS 
 

An example of an R package for frequency sta-

bility analysis is given in Appendix 6, as de-

scribed in Appendices 2 through 4.  Appendix 5 

contains some R code for regression analysis 

and modeling of phase and frequency data.  

 

 

7 CONCLUSIONS 
 

The R programming environment can be a use-

ful tool for frequency stability analysis.  While 

less suitable than a specialized application such 

as Stable32 for most analysis work, R is particu-

larly effective for academic study and evalua-

tion of new techniques and algorithms with im-

mediate feedback provided by its interpreted 

language. 
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ACRONYMS AND 

ABBREVIATIONS 
 
ACF Autocorrelation Function 
ADEV Allan Deviation 

AVAR Allan Variance 

CRAN Comprehensive R Archive Network  
FFT Fast Fourier Transform 

F FM Flicker Frequency Modulation 

F PM Flicker Phase Modulation 
FW FM Flicker Walk Frequency Modulation 

FW PM Flicker Walk Phase Modulation 

HDEV Hadamard Deviation 
HVAR Hadamard Variance 

IEEE Institute of Electrical and Electronic Engineers 

MAD Median Absolute Deviation 
MJD Modified Julian Date 

NIST National Institute of Standards and Technology 

PM Phase Modulation 
PSD Power Spectral Density 

R The R Programming Language 

RF Radio Frequency 
RW FM Random Walk Frequency Modulation 

RW PM Random Walk Phase Modulation 
RR FM Random Run Frequency Modulation 

RR PM Random Run Phase Modulation 

SSB Single Sideband 
STS Short Term Stability 

TDEV Time Deviation 

TVAR Time Variance 
T&F Time and Frequency 

UFFC Ultrasonics Ferroelectrics and Frequency Control 

W FM While Frequency Modulation 
W PM White Phase Modulation 
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 13 

Appendix 1 

Package ‘allanvar’ Demo: demo(allanvar) 

 
> demo(allanvar) 

 

        demo(allanvar) 

        ---- ~~~~~~~~ 

 

Type  <Return>   to start :  

 

> #Loading values 

> data(gyroz) 

 

> #Allan variance computation using avar 

> avgyroz <- avar(gyroz@.Data[1:1000], frequency(gyroz)) 

[1] "Calculating..." 

 

> plotav(avgyroz) 

Waiting to confirm page change... 

 

> abline(1.0+log(avgyroz$time[1]), -1/2, col="green", lwd=4, lty=10) 

 

> abline(1.0+log(avgyroz$time[1]), 1/2, col="green", lwd=4, lty=10) 

 

> legend(0.11, 1e-03, c("Random Walk")) 

 

> legend(2, 1e-03, c("Rate Random Walk")) 

 

> #Allan variance computation using avarn 

> avngyroz <- avarn(gyroz@.Data[1:1000], frequency(gyroz)) 

[1] "Calculating..." 

 

> plotav(avngyroz) 

Waiting to confirm page change... 

 

> abline(1.0+log(avngyroz$time[1]), -1/2, col="green", lwd=4, lty=10) 

 

> abline(1.0+log(avngyroz$time[1]), 1/2, col="green", lwd=4, lty=10) 

 

> legend(0.11, 1e-03, c("Random Walk")) 

 

> legend(2, 1e-03, c("Rate Random Walk")) 

 

> ##Allan variance computation using avari 

> ##Simple integration of the angular velocity 

> igyroz <- cumsum(gyroz@.Data[1:1000] * (1/frequency(gyroz))) 

 

> igyroz <- ts (igyroz, start=c(igyroz[1]), delta=(1/frequency(gyroz))) 

 

> avigyroz <- avari(igyroz@.Data, frequency(igyroz)) 

[1] "Calculating..." 

 

> plotav(avigyroz) 

Waiting to confirm page change... 

 

> abline(1.0+log(avigyroz$time[1]), -1/2, col="green", lwd=4, lty=10) 

 

> abline(1.0+log(avigyroz$time[1]), 1/2, col="green", lwd=4, lty=10) 

 

> legend(0.11, 1e-03, c("Random Walk")) 
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> legend(2, 1e-03, c("Rate Random Walk")) 

 

> #Ploting all 

> plot (avgyroz$time,sqrt(avgyroz$av),log= "xy", xaxt="n" , yaxt="n", type="l", 

col="blue", xlab="", ylab="") 

Waiting to confirm page change... 

 

> lines (avngyroz$time,sqrt(avngyroz$av), col="green", lwd=1) 

 

> lines (avigyroz$time,sqrt(avigyroz$av), col="red") 

 

> axis(1, c(0.001, 0.01, 0.1, 0, 1, 10, 100, 1000, 10000, 100000)) 

 

> axis(2, c(0.00001, 0.0001, 0.001, 0.01, 0.1, 0, 1, 10, 100, 1000, 10000)) 

 

> grid(equilogs=TRUE, lwd=1, col="orange") 

 

> title(main = "Allan variance Analysis Comparison", xlab = "Cluster Times (Sec)", 

ylab = "Allan Standard Deviation (rad/s)") 

 

> legend(1, 1e-03, c("GyroZ (avar)", "GyroZ(avarn)", "GyroZ(avari)"),  fill = 

c("blue", "green", "red")) 

Warning messages: 

1: In plot.xy(xy.coords(x, y), type = type, ...) : 

  "log" is not a graphical parameter 

2: In plot.xy(xy.coords(x, y), type = type, ...) : 

  "log" is not a graphical parameter 

3: In plot.xy(xy.coords(x, y), type = type, ...) : 

  "log" is not a graphical parameter 

>  
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Appendix 2 

R Code for Basic Frequency Stability Analysis Functions 
 

The R code for these functions can be copied to the file fsa.R from Appendix 6. 

 
 

Basic Frequency Stability Analysis Functions in R package fas.R 
 

 

Function 
 

 

Description 
 

 

Remarks 
 

pavg Average Phase Data Downsample by certain averaging factor 

favg                                                  Average Frequency Data Average by certain averaging factor 

ptof                                                Phase to Frequency Conversion First differences 

ftop                                                Frequency to Phase Conversion Numerical integration 

noise                                                  Generate Power Law Noise TK95 method for certain ADEV 

nid                                                Power Law Noise Identification Uses Lag 1 Autocorrelation 

bs                                                       Show Basic Statistics List basic statistics and show data plot 

co                                                       Count Outliers Using MAD limit 

padev Calculate Allan Deviation for Phase Data At basic sampling interval 

fadev Calculate Allan Deviation for Frequency Data At basic sampling interval 

poadev Calculate Overlapping ADEV for Phase Data At selected averaging factor 

foadev Calculate Overlapping ADEV for Freq Data At selected averaging factor 

adevrun Calc overlapping ADEV for an Octave Run At range of octave-s[aced taus 

pmdev Calculate Mod Allan Deviation for Phase Data At basic sampling interval – TDEV also 

phdev Calculate Hadamard Deviation for Phase Data At basic sampling interval 

fhdev Calculate Hadamard Deviation for Freq Data At basic sampling interval 

theo1  Calculate the Thêo1 Statistic for Phase Data At selected averaging factor 

psd Calculate and Plot a Power Spectral Density PSD may be smoothed, optional log scales 

 

Additional packages required: 

allanvar for avar() and avari() 

RobPer for TK95() 

zoo for rollapply() 

 

A 1000-point data set used as a test suite for frequency stability analysis statistics can be downloaded 

from: https://www.wriley.com/tst_suit.dat, and the results for a collection of such statistics will be found 

at: http://www.wriley.com/paper1ht.htm, see References [20] and [21] therein.  After downloading the 

test suite data, it can be read into R with: > ts<-scan("C:\\Data\\test_suite.dat")where the 

file name is edited appropriately for where it was stored. 

 

If you prefer, you can generate the test suite yourself with the following R code: 

 
# Generate the 1000-point test suite 

# Initializations 

ts<-1:1000 

ts[1]=1234567890 

# Generate data 

for(i in 2:1000) 

{ 

  ts[i]=(16807*ts[i-1])%%2147483647 

} 

https://www.wriley.com/tst_suit.dat
http://www.wriley.com/paper1ht.htm
http://www.wriley.com/00483922.pdf
http://www.wriley.com/00560270.pdf
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# Scale data 

for(i in 1:1000) 

{ 

  ts[i]=ts[i]/2147483647 

} 

# Optionally show and plot the generated data 

# Increase # R display digits to max 

# options(digits=22) 

# ts 

# plot(ts, type=”l”) 

# Restore normal # digits 

# options(digits=7) 

# Convert freq data to phase data 

tsp<- diffinv(ts) 

 

The test data can be confirmed as follows: 

 
> length(ts) 

[1] 1000 

> ts[1] 

[1] 0.5748905 

> max(ts) 

[1] 0.9957453 

> min(ts) 

[1] 0.00137176 

> mean(ts) 

[1] 0.4897745 

> median(ts) 

[1] 0.4798849 

 
 

A histogram can be produced with hist(ts).  

Notice that these test data are uniformly (not 

Gaussian) distributed.  That does not affect their 

usefulness for testing frequency stability analysis 

methods. 

 
 

Examples of tests with these test data on some of the R functions are as follows: 

 
> fadev(ts) 

[1] 0.2922319 

> fhdev(ts) 

[1] 0.2943883 

> ts10<-favg(ts,10) 

> length(ts10) 

[1] 100 

> fadev(ts10) 

[1] 0.09965736 

> tsp<-ftop(ts,1) 

> padev(tsp) 

[1] 0.2922319 

> phdev(tsp,1) 

[1] 0.2943883 

 

> tsp10<-pavg(tsp,10) 

> length(tsp10) 

[1] 101 

> padev(tsp10,1) 

[1] 0.9965736 
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pavg                                                 Average Phase Data 

 

Description 

Function to average phase data to a larger averaging factor. 

 

Usage 

pavg(x, af) 

 

Arguments 

x  The vector of phase data to be averaged. 

af  The averaging factor to be applied (default=2) 

 

Return Value 

The averaged phase data. 

 

Example 

 Average a set of phase data x by an averaging factor of 10: 

 pavg(x, 10) 

 

Reference 

 R. Everett, “A simple downsample function for vectors in R”, March 2011. 

http://evertqin.blogspot.com/2011/03/simple-downsample-function-for-vectors.html 

  

Code: 
 # Function to average phase data 

pavg<-function(x,af) 
{  

seed<-c(TRUE,rep(FALSE,af-1)) 
cont<-rep(seed,ceiling(length(x)/af))[1:length(x)] 
return(x[which(cont)])  

}  

http://evertqin.blogspot.com/2011/03/simple-downsample-function-for-vectors.html
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favg                                                 Average Frequency Data 

 

Description 

Function to average frequency data to a larger averaging factor. 

 

Usage 

favg(x, af) 

 

Arguments 

y  The vector of fractional frequency data to be averaged. 

af  The averaging factor to be applied (default=2). 

 

Return Value 

The averaged frequency data. 

 

Example 

 Average a set of frequency data y by an averaging factor of 10: 

 favg(y, 10) 

 

Reference 

 M. Toller, T. Santos & R. Kern, “Parameter-Free Domain-Agnostic Season Length Detection 

in Time, R package ‘sazedR, September 2019. 

https://www.google.com/search?q=package%20sazedR 

 

 

Code 
 # Function to average frequency data 

favg<-function(data,af=2) 
{ 

(return(rollapply(data,width=af,by=af,FUN=mean)) 
} 

 

https://www.google.com/search?q=package%20sazedR
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ptof                                               Phase to Frequency Conversion 

 

Description 

Function to convert phase data to fractional frequency data. 

 

Usage 

ptof(x, tau) 

 

Arguments 

x  The vector of phase data to be converted. 

tau  The data sampling interval, tau (default=1). 

 

Return Value 

The converted fractional frequency data. 

 

Example 

 Convert a set of phase data in seconds to dimensionless fractional frequency data for data having 

a sampling interval of 10 seconds: 

 ptof(x, 10) 

 

Reference 

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July 

2008 book at Handbook, and download it as NIST Special Publication 1065. 

 

Code 
 # Function for phase to frequency conversion 

ptof<-function(x,af) 
{ 
 return(diff(x)/tau) 
} 

 

  

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
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ftop                                               Frequency to Phase Conversion 

 

Description 

Function to convert fractional frequency data to phase data 

 

Usage 

ftop(y, tau) 

 

Arguments 

y  The vector of fractional frequency data to be converted. 

tau  The data sampling interval, tau (default=1). 

 

Return Value 

The converted phase data. 

 

Example 

 Convert a set of dimensionless fractional frequency data to phase data for data having a sampling 

interval of 10 seconds: 

 ftop(y, 10) 

 

Reference 

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July 

2008 book at Handbook, and download it as NIST Special Publication 1065. 

 

Code 
 # Function for frequency to phase conversion  

ftop<-function(y,tau) 
{ 
 return(diffinv(y)*tau) 
} 

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
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noise                                                 Generate Power Law Noise 

 

Description 

Function to generate a certain number of points of noise having a certain power law exponent, 

zero mean and a certain Allan deviation.  The data type can be either phase or frequency with a 

certain sampling time for the former. 

 

Imports 

 Package RobPer required. 

 

Usage 

noise(num, exp, sigma, type, tau) 

 

Arguments 

num  The number of points to generate. 

exp  The power law exponent (not necessarily an integer) 

  White   0 

  Flicker   1 

Random Walk  2 

Note that these values are not the same as those normally associated with , 

the power law noise exponent used in the field of frequency stability analysis. 

 

Power Law Noise Data Files 

Data Type Noise Type  exp 

Phase=0 White PM +2 0 

Flicker PM +1 1 

Frequency=1 White FM 0 0 

Flicker FM -1 1 

RW FM -2 2 

  

sigma  The desired Allan deviation at the basic sampling interval of the data. 

type  The type of data to be generated, 0=phase, 1=frequency (default=0). 

tau  The sampling time for the phase data (N/A for frequency data) (default=1) 

 

Return Value 

The resulting power law noise data. 

 

Example 

 Generate 4096 points of flicker FM noise with AVAR=1e-11: 
 y <- noise(4096, 1, 1e-11, 1) # No tau required 

 Write these data to a file as frequency data: 
write(y,"C:\\Data\\F_FM.frd",1) 

Read the data file into a vector: 
z<-scan("C:\\Data\\F_FM.frd") 

 

Reference 

J. Timmer and M. Kőning, “On Generating Power Law Noise”, Astronomy and Astrophysics, 

Vol. 2.3, pp. 1-4, March 1995. 
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Notes 

An offset can be added to the generated data with z=z+offset, and it can be scaled with z=z*scale.  

A linear slope can be added with: for(i in 1:length(y)) y[i]=y[i]+i*slope where slope is 

the desired slope per sampling interval.  Generic filename extensions for phase or frequency data are 

typically .dat or .txt.  Stable32 optionally uses the extensions .phd and .frd for phase and frequency data 

respectively. 

 

Code 
 # Function to generate power law noise 

noise<-function(num,exp,sigma,type,tau=1) 
 { 
  z<-TK95(num,exp) 
  if(type==0) d<-padev(z,tau) 

else d<-fadev(z) 
z=(z/d)*sigma 

  m=mean(z) 
  z=z-m 
  return(z) 
 } 

 

Test Case 

 > y <- noise(4096, 1, 1e-11, 1 
> write(y,"C:\\Data\\F_FM.frd",1) 

 > plot(y) 

 

 

 

 
 

Note the correct noise type and sigma at the basic sam-

pling interval, with negligible offset.  However the Sta-

ble32 stability plot shows significant departure from a 

flicker noise characteristic at longer averaging times, 

and the Stable32 autocorrelation plot indicates that the 

power law exponent,  is -1.34 rather than the request-

ed -1. 
 

R Data Plot 

 

 

Stable32 Stats 
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Stable32 Stability Plot 
 

Stable32 Autocorrelation Plot 
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nid                                               Power Law Noise Identification 

 

Description 

Function to ID the dominant type of power law noise in phase or frequency data using the lag 1 

autocorrelation.  It requires a minimum of about 30 data points. 

 

Usage 

nid(z) 

 

Arguments 

z  The vector of phase or fractional frequency data to be examined. 

 

Return Value 

The estimated power law noise exponent, , at the basic sampling interval. 

 

Example 

ID the dominant noise type of a set of phase data: 
> nid(x0) 
[1] 2.01985990379 

The nominal power law noise type is W PM 

 

Reference 

W.J. Riley and C.A. Greenhall, “Power Law Noise Identification Using the Lag 1 Autocorrela-

tion,” Proceedings of the 18
th

 European Frequency and Time Forum, April 2004. 

 

Note 

 The  value returned by this function refers only to the data itself and not whether it represents 

phase or frequency information.  Thus the returned value is the correct  for phase data, but 2 must be 

subtracted from it for frequency data. 

 

Code 
# Find noise type using the lag 1 ACF method 
nid<-function(z) 
{ 

nD=0 # Difference order 
# Save original data 
zz<-z 
# Calc lag 1 autocorrelation r1 
r1=acf(z,1, "cor",F) 
r1=r1$acf[2] 
# Find d = r1/(1+r1) 
d=r1/(1+r1) 
# If d<0.25, must apply increment operator 
if(d>0.25) 
{ 

while(d>=0.25) 
{ 

# Take 1st differences 
Z<-diff(z) 
nD=nD+1 
# Calc lag 1 autocorrelation r1 

http://www.stable32.com/Paper125Preprint.pdf
http://www.stable32.com/Paper125Preprint.pdf
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r1=acf(z,1, "cor",F) 
r1=r1$acf[2] 
# Find d = r1/(1+r1) 
d=r1/(1+r1) 

} 
} 
# Calc alpha 
alpha=-2*d -2*nD +2 
# Restore original data 
z<-zz 
return (alpha) 

} 
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bs                                                      Show Basic Statistics 

 

Description 

Function to show the basic statistics and plot for phase or frequency data. 

 

Usage 

bs(z, type, tau) 

 

Arguments 

z  The vector of phase or fractional frequency data to be examined. 

type  The type of data to be generated, 0=phase, 1=frequency (default=0) 

tau  The sampling time for the phase data (N/A for frequency data) (default=1) 

 

Return Value 

The basic statistics are printed and the data are plotted. 

 

Example 

 See Appendix 4 

 

Reference 

None – See similar Stable32 Stats function 

 

Note 

 The noise type ID covers the range between  = -2 (RW FM) to +2 (W PM) 

 

Code 
# Function to show basic statistics of phase or frequency data 
bs <- function(z,type,tau) 
{ 
  print("Basic Statistics:", quote=FALSE) 
  txt=paste("File =", deparse(substitute(z))) 
  print(txt, quote=FALSE)if(type==0) 
  { 
    print("Type = Phase", quote=FALSE) 
  } 
  else 
  { 
    print("Type = Frequency", quote=FALSE) 
  } 
  txt=paste("Tau =", tau) 
  print(txt, quote=FALSE) 
  txt=paste("# Points =", length(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Max =", max(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Min =", min(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Span=", max(z)-min(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Mean =", mean(z)) 
  print(txt, quote=FALSE) 
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  txt=paste("Median =", median(z)) 
  print(txt, quote=FALSE) 
  txt=paste("MAD =", mad(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Std Dev =", sqrt(var(z))) 
  print(txt, quote=FALSE) 
  if(type==0) # Phase data 
  { 
    txt=paste("Sigma =", padev(z,tau)) 
    print(txt, quote=FALSE) 
    alpha=nid(z) 
  } 
  else # Freq data 
  { 
    txt=paste("Sigma =", fadev(z)) 
    print(txt, quote=FALSE) 
    alpha=nid(z)-2 
  } 
  txt=paste("Alpha =", alpha ) 
  print(txt, quote=FALSE) 
  if(alpha>1.5) 
  { 
    txt=paste("Noise = W PM") 
    print(txt, quote=FALSE) 
  } 
  else if(alpha>0.5) 
  { 
  txt=paste("Noise = F PM") 
  print(txt, quote=FALSE) 
  } 
  else if(alpha>-0.5) 
  { 
    txt=paste("Noise = W FM") 
    print(txt, quote=FALSE) 
  } 
  else if(alpha>-1.5) 
  { 
    txt=paste("Noise = F FM") 
    print(txt, quote=FALSE) 
  } 
  else 
  { 
    txt=paste("Noise = RW FM") 
    print(txt, quote=FALSE) 
  } 
  plot(z) 
} 
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Drift 

The least-squares linear drift of a set of fractional frequency data can be determined with the 

function call: lm(y~t) where y is the frequency data and t<=1:length(y).  It can be re-

moved by: for(i in 1:length(y)) y[i]=y[i]-i*slope, where slope is the calculated 

slope. 

 

Similary, the  least-squares quadratic drift fit for a set of phase data can be determined by: t2<-

t^2 and lm(x~t+t2) where t<=1:length(x).   
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co                                                      Count Outliers 

 

Description 

Function to count the number of outliers in phase or frequency data. 

 

Usage 

co(z, limit) 

 

Arguments 

z  The vector of phase or fractional frequency data to be examined. 

limit  The MAD factor limit for OK data (default=5) 

 

Return Value 

The number of outliers that exceed the MAD*limit. 

 

Reference 

Gernot M.R. Winkler, "Introduction to Robust Statistics and Data Filtering," Tutorial at 1993 IEEE 

Frequency Control Symposium, June 1993.  

 

Code 
# Function to count outliers in phase or frequency data 
co <- function(z, limit=5) 
{ 
  # Find MAD 
  m=mad(z) 
  # Count outliers 
  n=sum(z<(-m*limit))+sum(z>(m*limit)) 
  return (n) 
}

http://www.stable32.com/ROBSTAT.htm
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padev                                           Calculate Allan Deviation for Phase Data 

 

Description 

Function to calculate the estimated ADEV of a set of phase data at its basic sampling interval. 

 

Usage 

padev(x, tau) 

 

Arguments 

x  The vector of phase data to be analyzed. 

tau  The data sampling interval, seconds (default=1). 

 

Return Value 

The estimated Allan deviation for the phase data at its basic sampling interval. 

 

Example 

 Find the estimated ADEV for a set of phase data: 

 padev(x,1) 

 

Reference 

 Function avari() in R package ‘allanvar’.  This function adapts that code to calculate the 

ADEV at a single averaging factor.  See: https://rdrr.io/cran/allanvar/src/R/avari.R. 

 

Code 
# Function to calculate the ADEV for phase data 
padev <- function (x, tau=1) 
{ 
   N=length(x) 
 s=0 
 for (i in 1:(N-2)) 
 { 
  s = s + (x[i+2]-(2*x[i+1])+x[i])^2 
 } 
 av = s/(2*(tau^2)*(N-2)) 
 return (sqrt(av)) 
} 

 

Test Case 

 Classic NBS Monograph 140 Annex 8.E frequency values from: B.E. Blair (Editor), Time and 

Frequency: Theory and Fundamentals, NBS Monograph 140, Annex 8.E, p. 181, May 1974. 

 
> nbs<-c(892,809,823,798,671,644,883,903,677) 

> nbs 

[1] 892 809 823 798 671 644 883 903 677 

> nbsi<-diffinv(nbs) 

> nbsi 

 [1]    0  892 1701 2524 3322 3993 4637 5520 6423 7100 

> padev(nbsi,1) 

 [1] 91.22945 

  

https://rdrr.io/cran/allanvar/src/R/avari.R
http://www.wriley.com/NBS140Annex8E.pdf
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fadev                                           Calculate Allan Deviation for Frequency Data 

 

Description 

Function to calculate the estimated ADEV of a set of fractional frequency data at its basic sam-

pling interval. 

 

Imports 

 Package RobPer required. 

 

Arguments 

y  The vector of fractional frequency data to be analyzed. 

 

Return Value 

The estimated Allan deviation for the frequency data at its basic sampling interval. 

 

Example 

 Find the estimated ADEV for a set of frequency data: 

 fadev(y) 

 

Reference 

 Function avar() in R package ‘allanvar’.  This function adapts that code to calculate the 

ADEV at a single averaging factor.  See: https://rdrr.io/cran/allanvar/src/R/avar.R. 

 

Code 
# Function to calculate the ADEV for frequency data 
fadev <- function(y) 
{ 
    N=length(y)  
    s=0 
    for (i in 1:(N-1)) 
    { 
        s = s + (y[i+1]-y[i])^2 
    } 
    av=s/(2*(N-1)) 
    return (sqrt(av)) 
} 
 

Test Case 

 Classic NBS Monograph 140 Annex 8.E frequency values from: B.E. Blair (Editor), Time and 

Frequency: Theory and Fundamentals, NBS Monograph 140, Annex 8.E, p. 181, May 1974. 
 

> nbs 

[1] 892 809 823 798 671 644 883 903 677 

> fadev(nbs) 

[1] 91.22945 

https://rdrr.io/cran/allanvar/src/R/avar.R
http://www.wriley.com/NBS140Annex8E.pdf
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poadev                                           Calculate Overlapping Allan Deviation for Phase Data 

 

Description 

Function to calculate the estimated overlapping ADEV of a set of phase data. 

 

Usage 

poadev(x, tau, af) 

 

Arguments 

x  The vector of phase data to be analyzed. 

tau  The data sampling interval of the phase data, seconds (default=1). 

af  The averaging factor for the ADEV estimate (default=1). 

 

Return Value 

The estimated Allan deviation for the phase data at a certain averaging factor. 

 

Example 

 Find the estimated overlapping ADEV for a set of phase data with tau=1 at AF=10 

 poadev(x,1,10) 

 

Reference 

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July 

2008 book at Handbook, and download it as NIST Special Publication 1065. 

 

Code 
# Function to calculate the overlapping Allan deviation from phase data 
poadev <- function(x, tau=1, m=1) 
{ 
  N=length(x) 
  s=0   
  for(i in 1:(N-2*m)) 
  { 
    s = s + (x[i+2*m]-2*x[i+m]+x[i])^2 
  } 
  s = s/(2*m^2*(N-2*m)*tau^2) 
  return (sqrt(s)) 
} 
 

Test Case 

1000-Point Test Suite phase data.  See: W.J. Riley, “A Test Suite for the Calculation of Time 

Domain Frequency Stability”, Proceedings of the 1995 IEEE International Frequency Control 

Symposium, pp. 360-366, June 1995.  It may be downloaded as frequency data from: 

https://www.wriley.com/tst_suit.dat 

 
> poadev(tsp,1,1) 

[1] 0.2922319 

> poadev(tsp,1,10) 

[1] 0.09159953 

> poadev(tsp,1,100) 

[1] 0.03241343 

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://www.wriley.com/tst_suit.dat
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foadev                                           Calculate Overlapping Allan Deviation for Frequency Data 

 

Description 

Function to calculate the estimated overlapping ADEV of a set of fractional frequency data. 

 

Requires 

 Functions ftop() and poadev() in this package. 

 

Usage 

foadev(y, tau, af) 

 

Arguments 

y  The vector of fractional frequency data to be analyzed. 

tau  The sampling interval of the frequency data, (default=1). 

af  The averaging factor for the ADEV estimate (default=1). 

 

Return Value 

The estimated Allan deviation for the frequency data at a certain averaging factor. 

  

Example 

Find the estimated ADEV for a set of frequency data with tau=1 at AF=10. 

 fadev(y) 

 

Reference 

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July 

2008 book at Handbook, and download it as NIST Special Publication 1065. 

 

Note 

 It is faster and more efficient to convert frequency data to phase data before calculating the 

overlapping Allan deviation for frequency data, thereby avoiding nested summations.  

 

Code 
# Function to calculate the overlapping Allan deviation from freq data 
foadev <- function(y, tau=1, af=1) 
{ 
    x=ftop(y,tau) 
    ad=poadev(x,tau,af) 
    return (ad) 
} 
 

Test Case 

 1000-Point Test Suite frequency data.  See: W.J. Riley, “A Test Suite for the Calculation of Time 

Domain Frequency Stability”, Proceedings of the 1995 IEEE International Frequency Control 

Symposium, pp. 360-366, June 1995. .  Downloaded from: https://www.wriley.com/tst_suit.dat 

 
> foadev(ts,1,1) 

[1] 0.2922319 

> foadev(ts,1,10) 

[1] 0.09159953 

> foadev(ts,1,100) 

[1] 0.03241343 

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://www.wriley.com/tst_suit.dat
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adevrun                           Calculate Overlapping Allan Deviation for an Octave Run 

 

Description 

Function to calculate the estimated overlapping ADEV of a set of phase or frequency data over a 

range of octave averaging factors 

 

Usage 

adevrun(z, type, tau) 

 

Arguments 

z  The vector of phase or frequency data to be analyzed. 

type  The data type, 0=phase, 1=frequency (default=0)  

tau  The data sampling interval of the data, seconds (default=1). 

 

Return Value 

An ‘allanvar’-compatable data frame containing tau, AVAR and error bar values 

 for the estimated Allan deviations for the data over a range of octave averaging factors. 

 

Example 

 Find the estimated overlapping ADEVs for a set of phase data with tau=1 over a range 

of octave averaging factors: 

 devrun(x,0,1) 

 

Reference 

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July 

2008 book at Handbook, and download it as NIST Special Publication 1065. 

 

Code 
# Function to calculate the overlapping Allan deviation 
# from phase or data over a range of octave averaging factors 
# The function writes a table of af and ADEV values 
# and returns a data frame compatible with the 'allanvar' package 
# containing time, av (AVAR not ADEV) and error vectors 
# which can be plotted with plotav() 
adevrun <- function(z, type=0, tau=1) 
{ 
  # If frequency data, convert it to phase data 
  if(type==1) 
  { 
    x<-ftop(z) 
  } 
  else 
  { 
    x<-z 
  }   
  # Initializations 
  N=length(x) 
  af=1 
  n=1 # point # 
  # Loop thru AFs up to limit, calculating ADEV 
  # The maximum AF is floor(N/4) 

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
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  # The # stability points is: 
  # ceiling(log10(floor(N/4))/log10(2)) 
  p=ceiling(log10(floor(N/4))/log10(2)) 
  # Create results table per 'allanvar' package 
  # Note that that table has AVAR not ADEV 
  time<-1:p 
  av<-1:p 
  error<-1:p 
  while(af<=floor(N/4)) 
  { 
    ad=poadev(x,tau,af) 
    print(paste0("AF= ",af,"  ADEV=",ad)) 
    av[n]=ad^2 
    time[n]=tau*af 
    # Equation for error AV estimation per allanvar 
    # See Papoulis (1991) for further information 
    error[n]=1/(sqrt(2*(N/(af-1)))) 
    af=af*2 
    n=n+1 
  } 
  return (data.frame(time,av,error)) 
} 
 

Test Case 

1000-Point Test Suite frequency data.  See: W.J. Riley, “A Test Suite for the Calculation of Time 

Domain Frequency Stability”, Proceedings of the 1995 IEEE International Frequency Control 

Symposium, pp. 360-366, June 1995.  It may be downloaded from: 

https://www.wriley.com/tst_suit.dat. 

 
> r<-adevrun(ts,1,1) 

[1] "AF= 1  ADEV=0.29223187810676" 

[1] "AF= 2  ADEV=0.201016042170939" 

[1] "AF= 4  ADEV=0.144791307218438" 

[1] "AF= 8  ADEV=0.1057038500787" 

[1] "AF= 16  ADEV=0.0619147784187454" 

[1] "AF= 32  ADEV=0.0480821426212821" 

[1] "AF= 64  ADEV=0.036237212985705" 

[1] "AF= 128  ADEV=0.0276738558206943" 

 

> plotav(r) 

https://www.wriley.com/tst_suit.dat
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Equivalent Stable32 stability table and plot results are as follows: 

 
STATISTICS FOR FILE: test_suite.dat 

 Frequency Data Points 1 thru 1000 of 1000 

 Maximum = 9.957453e-01 

 Minimum = 1.371760e-03 

 Average = 4.897745e-01 

 Sigma Type: Overlapping Allan 

 Confidence Factor = 0.683 

 Deadtime T/Tau = 1.000000 

 

  AF        Tau        #    Alpha  Min Sigma      Sigma         Max Sigma 

    1   1.0000e+00      999     0   2.8515e-01    2.9223e-01     2.9987e-01 

    2   2.0000e+00      997     0   1.9520e-01    2.0102e-01     2.0738e-01 

    4   4.0000e+00      993     0   1.3931e-01    1.4479e-01     1.5098e-01 

    8   8.0000e+00      985     0   1.0038e-01    1.0570e-01     1.1198e-01 

   16   1.6000e+01      969     0   5.7696e-02    6.1915e-02     6.7217e-02 

   32   3.2000e+01      937     0   4.3654e-02    4.8082e-02     5.4202e-02 

   64   6.4000e+01      873     0   3.1755e-02    3.6237e-02     4.3377e-02 

  128   1.2800e+02      745     0   2.3045e-02    2.7674e-02     3.7027e-02 
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pmdev                                           Calculate Modified Allan Deviation for Phase Data 

 

Description 

Function to calculate the estimated MDEV of a set of phase data. 

 

Usage 

pmdev(x, tau, af) 

 

Arguments 

x  The vector of phase data to be analyzed. 

tau  The data sampling interval of the phase data, seconds (default=1). 

af  The averaging factor for the MDEV estimate (default=1). 

 

Return Value 

The estimated Modified Allan deviation for the phase data at a certain averaging factor. 

 

Example 

 Find the estimated MDEV for a set of phase data with data sampling interval tau=1 and AF=10 

 pmdev(x,1,10) 

 

Reference 

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July 

2008 book at Handbook, and download it as NIST Special Publication 1065. 

 

Code 
# Function to calculate Modified Allan deviation 
# MVAR for phase data 
# Argument tau is basic data sampling interval 
# Each analysis tau is tau*m 
# where argument m is averaging factor 1 to N/3 
pmdev<-function(x, tau=1, m=1) 
{ 
  N=length(x) 
  mvar=0 
  # Outer loop 
  for(j in 1:(N-3*m+1)) 
  { 
    s=0 
    # Inner loop 
    for(i in j:(j+m-1)) 
    { 
      s=s+(x[i+(2*m)]-2*x[i+m]+x[i]) 
    } 
    mvar=mvar+s^2 
  } 
  # Scaling 
  mvar=mvar/(2*m^2*m^2*tau^2*(N-3*m+1)) 
  return (sqrt(mvar)) 
} 
 

 

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
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Test Case 

1000-Point Test Suite phase data.  See: W.J. Riley, “A Test Suite for the Calculation of 

TimeDomain Frequency Stability”, Proceedings of the 1995 IEEE International Frequency Con-

trol Symposium, pp. 360-366, June 1995.  It may be downloaded as frequency data from: 

https://www.wriley.com/tst_suit.dat. 

 
> pmdev(tsp) 

[1] 0.2922319 

> pmdev(tsp,1,10) 

[1] 0.06172376 

> pmdev(tsp,1,100) 

[1] 0.02170921 

 

Time Deviation 

 One can easily get the time deviation, TDEV, from MDEV by multiplying by sqrt(
2
/3): 

 
 > pmdev(tsp)*sqrt(1*1/3) 

 [1] 0.1687202 

 

https://www.wriley.com/tst_suit.dat
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phdev                                           Calculate Hadamard Deviation for Phase Data 

 

Description 

Function to calculate the estimated HDEV of a set of phase data at its basic sampling interval. 

 

Usage 

phdev(x, tau) 

 

Arguments 

x  The vector of phase data to be analyzed. 

tau  The data sampling interval, seconds (default=1). 

 

Return Value 

The estimated Hadamard deviation for the phase data at its basic sampling interval. 

 

Example 

 Find the estimated HDEV for a set of phase data: 

 phdev(x,1) 

 

Reference 

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July 

2008 book at Handbook, and download it as NIST Special Publication 1065. 

 

Code 
# Function to calculate the Hadamard deviation from phase data 
phdev <- function (x, tau=1) 
{ 
   N=length(x) 
 s=0 
 for (i in 1:(N-3)) 
 { 
  s = s +(x[i+3] -3*x[i+2] +3*x[i+1] -x[i])^2 
 } 
 hv = s/(6*(tau^2)*(N-3)) 
 return (sqrt(hv)) 
} 

 

Test Case 

 Classic NBS Monograph 140 Annex 8.E frequency values from: B.E. Blair (Editor), Time and 

Frequency: Theory and Fundamentals, NBS Monograph 140, Annex 8.E, p. 181, May 1974. 

 
> nbs<-c(892,809,823,798,671,644,883,903,677) 

> nbs 

[1] 892 809 823 798 671 644 883 903 677 

> nbsi<-diffinv(nbs) 

> nbsi 

 [1]    0  892 1701 2524 3322 3993 4637 5520 6423 7100 

> phdev(nbsi,1) 

 [1] 70.80607 

  

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
http://www.wriley.com/NBS140Annex8E.pdf
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fhdev                                           Calculate Hadamard Deviation for Frequency Data 

 

Description 

Function to calculate the estimated HDEV of a set of fractional frequency data at its basic sam-

pling interval. 

 

Imports 

 Package RobPer required. 

 

Arguments 

y  The vector of fractional frequency data to be analyzed. 

 

Return Value 

The estimated Hadamard deviation for the frequency data at its basic sampling interval. 

 

Example 

 Find the estimated HDEV for a set of frequency data: 

 fhdev(y) 

 

Reference 

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July 

2008 book at Handbook, and download it as NIST Special Publication 1065. 

 

Code 
# Function to calculate the Hadamard deviation from freq data 
fhdev <- function(y) 
{ 
    N=length(y)  
    s=0 
    for (i in 1:(N-2)) 
    { 
        s = s + (y[i+2] -2*y[i+1] +y[i])^2 
    } 
    hv=s/(6*(N-2)) 
    return (sqrt(hv)) 
} 
 

Test Case 

 Classic NBS Monograph 140 Annex 8.E frequency values from: B.E. Blair (Editor), Time and 

Frequency: Theory and Fundamentals, NBS Monograph 140, Annex 8.E, p. 181, May 1974. 
 

> nbs 

[1] 892 809 823 798 671 644 883 903 677 

> fhdev(nbs) 

[1] 70.80607 

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
http://www.wriley.com/NBS140Annex8E.pdf
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theo1                                           Calculate the Thêo1 Statistic for Phase Data 

 

Description 

Function to calculate the Thêo1 statistic for a set of phase data. 

 

Arguments 

x  The vector of phase data to be analyzed. 

tau  The sampling interval of the phase data, seconds (default=1). 

af  The averaging factor for the analysis (must be even, default=2) 

 

Return Value 

The estimated value of the Thêo1 statistic for the phase data at a certain averaging factor. 

 

Example 

 Find Thêo1 for a set of phase data having a tau=1 second at an averaging factor of 2: 

 fhdev(y) 

 

Reference 

D.A. Howe and T.K. Peppler, “Very Long-Term Frequency Stability: Estimation Using a Spe-

cial-Purpose Statistic”, Proceedings of the 2003 IEEE International Frequency Control Sympo-

sium, May 2003. 

 

Code 
# Find Theo1 per Howe and Peppler (2003) 
# x = phase data vector (1 to N) 
# tau = data sampling interval 
# m = averaging factor (2 to N-1) 
# m must be even 
# Analysis tau = m*tau 
# Stride = 0.75*m*tau 
theo1<-function(x, tau=1, m=2) 
{ 
  # Initializations 
  N-length(x) 
  t1=0 
   
  # Outer sum 
  for( i in 1:(N-m)) 
  { 
    sum=0 
    # Inner sum 
    for( d in 0:((m/2)-1)) 
    { 
      s=(1/((m/2)-d))*((x[i]-x[i-d+(m/2)]+x[i+m]-x[i+d+(m/2)])^2) 
      sum=sum+s 
    } 
    t1=t1+sum 
  } 
   
  # Scaling factor 
  t1=t1/(0.75*(N-m)*(m*tau)^2) 
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  # Return Theo1 deviation 
  return (sqrt(t1)) 
} 
 

Test Case 
 

Test data of Appendix I of Reference: 
> t 

1]  1.00  2.50  0.65 -3.71 -3.30  1.08  0.50  2.20  4.68  3.29 

 

Test results: 

  
> theo1(t,1,4) 

[1] 1.509405 

> theo1(t,1,6) 

[1] 1.412349 

> theo1(t,1,8) 

[1] 1.148758 
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psd                                          Calculate and Plot a Power Spectral Density 

 

Description 

Function to calculate and plot a power spectral density (PSD) for phase or frequency data. 

 

Arguments 

z The time series to be analyzed 

span # of smoothing spans to use (default=10) 

logx Flag to use log x scale (default=TRUE) 

logy Flag to use log y scale (default=TRUE) 

title Plot title (default=”PSD Plot” 

 

Return Value 

The requested PSD plot. 

 

Example 

 Plot the PSD for a set of phase data: 

 
      psd(phase, span=10,logx=TRUE, logy=TRUE, title="Phase PSD Plot") 

 

 

 
 

Code 
# Function to calculate and plot a power spectral density 
# for phase or frequency data 
psd <- function(z, span=10, logx=TRUE, logy=TRUE, title="PSD Plot") 
{ 
 s<-spectrum(z,span) 
 freq<-s$freq 
 psd<-2*s$spec 
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 if( logx==FALSE & logy==FALSE) 
 { 
  plot(freq,psd,type="l",main=title) 
 } 
 else if(logx==FALSE & logy==TRUE) 
 { 
  plot(freq,log10(psd),type="l",main=title) 
 } 
 else if(logx==TRUE & logy==FALSE) 
 { 
  plot(log10(freq),psd,type="l",main=title) 
 } 
 else(logx==TRUE & logy==TRUE) 
 { 
  plot(log10(freq),log10(psd),type="l",main=title) 
 } 
} 
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Appendix 3 

Notes for padev() and fadev() 

 

These functions calculate the Allan deviation at a single unity averaging factor.  At that basic 

sampling interval there is no difference between non-overlapping and overlapping samples, nor 

between the Allan and Modified Allan deviations.  The functions pavg() and favg() can be used 

to average the phase or frequency data to a longer tau before applying padev() or fadev(). 

 
> # Save x0 data file 

> x<-x0 

> length(x) 

[1] 4096 

> # Calculate ADEV over a range 

> # of octave averaging factors 

> padev(x) 

[1] 1e-11 

> x<-pavg(x) 

> length(x) 

[1] 2048 

> padev(x,2) 

[1] 4.99267805585e-12 

> x<-pavg(x) 

> length(x) 

[1] 1024 

> padev(x,4) 

[1] 2.50433298546e-12 

> x<-pavg(x) 

> length(x) 

[1] 512 

> padev(x,8) 

[1] 1.24888717539e-12 

 

 

 

Notice that the tau is entered for the averaged padev() calculations. 
 

# Repeat for frequency data 

> y<-ptof(x0) 

> length(y) 

[1] 4095 

> fadev(y) 

[1] 1e-11 

> y<-favg(y) 

> length(y) 

[1] 2047 

> fadev(y) 

[1] 4.99267805585e-12 

> y<-favg(y) 

> fadev(y) 

[1] 2.50433298546e-12 

> y<-favg(y) 

> length(y) 

[1] 511 

> fadev(y) 

[1] 1.24888717539e-12 

 

 

 
 

But, for higher-confidence, it is better to use the entire data set and overlapping samples as im-

plemented in avari() of the ‘allanvar’ package and in poadev() and foadev(). 

 

The padev() and fadev() functions are used by the noise() generation function to set the desired 

Allan deviation for their respective data type.  They are also used by the bs() function to show 

that quantity.  
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Appendix 4 

Examples of Noise Generation, Data Plots, Noise Identification and Basic Statistics 

with the functions noise(), plot(), nid(), and bs() 

 

 

 

 

W PM 

 

x0<-noise(4096,0,1e-11,0,1) 

plot(x0) 

bs(x0) 
write(x0,"C:\\Data\\x0.phd",1) 

 

[1] Basic Statistics: 

[1] File = x0 

[1] Type = Phase 

[1] Tau = 1 

[1] # Points = 4096 

[1] Max = 2.02978610909385e-11 

[1] Min = -2.01314251491493e-11 

[1] Span= 4.04292862400878e-11 

[1] Mean = -8.26356594567044e-29 

[1] Median = 4.70758166928985e-14 

[1] MAD = 5.73682842157458e-12 

[1] Std Dev = 5.72330213491854e-12 

[1] Sigma = 9.99999999999999e-12 

[1] nid = 2.01985990379316 

[1] Alpha = 2.01985990379316 

[1] Noise = W PM 

 

 

 

 

F PM 

 

x1<-noise(4096,1,1e-11,0,1) F PM 

plot(x1) 

bs(x1) 
write(x1,"C:\\Data\\x1.phd",1) 
 

[1] Basic Statistics: 

[1] File = x1 

[1] Type = Phase 

[1] Tau = 1 

[1] # Points = 4096 

[1] Max = 5.84807189016316e-11 

[1] Min = -5.62330868955754e-11 

[1] Span= 1.14713805797207e-10 

[1] Mean = -3.51577740975912e-28 

[1] Median = 6.85181196368336e-13 

[1] MAD = 1.38708603479839e-11 

[1] Std Dev = 1.43574889402762e-11 

[1] Sigma = 1e-11 

[1] nid = 0.729755489755081 

[1] Alpha = 0.729755489755081 

[1] Noise = F PM 
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RW PM 

 

x2<-noise(4096,2,1e-11,0,1) RW PM 

plot(x2) 

bs(x2) 
write(x2,"C:\\Data\\x2.phd",1) 

 

[1] Basic Statistics: 

[1] File = x2 

[1] Type = Phase 

[1] Tau = 1 

[1] # Points = 4096 

[1] Max = 6.47927717483002e-10 

[1] Min = -4.47189694402041e-10 

[1] Span= 1.09511741188504e-09 

[1] Mean = -9.51670086404567e-27 

[1] Median = -4.67813969398479e-11 

[1] MAD = 2.52791718953365e-10 

[1] Std Dev = 2.37408182839263e-10 

[1] Sigma = 1e-11 

[1] nid = -0.276641140000412 

[1] Alpha = -0.276641140000412 

[1] Noise = W FM 

 

 

 

 

W FM 

 

y0<-noise(4096,0,1e-11,1,1) 

plot(y0) 

bs(y0,1,1) 
write(y0,"C:\\Data\\y0.frd",1) 

 

[1] Basic Statistics: 

[1] File = y0 

[1] Type = Frequency 

[1] Tau = 1 

[1] # Points = 4096 

[1] Max = 3.63859071683338e-11 

[1] Min = -4.13911634846489e-11 

[1] Span= 7.77770706529828e-11 

[1] Mean = -1.96120527724863e-28 

[1] Median = 1.29435902553715e-13 

[1] MAD = 9.93182203459801e-12 

[1] Std Dev = 1.00879385318981e-11 

[1] Sigma = 1e-11 

[1] nid = 1.9659025637474 

[1] Alpha = -0.0340974362525981 

[1] Noise = W FM 

 



 49 

 

 

 

F FM 

 

y1<-noise(4096,1,1e-11,1,1) 

plot(y1) 

bs(y1,1,1) 
write(y1,"C:\\Data\\y1.frd",1) 

 

[1] Basic Statistics: 

[1] File = y1 

[1] Type = Frequency 

[1] Tau = 1 

[1] # Points = 4096 

[1] Max = 7.49371347343171e-11 

[1] Min = -1.04900962344573e-10 

[1] Span= 1.79838097078891e-10 

[1] Mean = -3.07898420209187e-28 

[1] Median = -1.04051185404546e-13 

[1] MAD = 2.25373829312755e-11 

[1] Std Dev = 2.28232081099642e-11 

[1] Sigma = 1e-11 

[1] nid = 0.718287670833863 

[1] Alpha = -1.28171232916614 

[1] Noise = F FM 

 

 

 

 

RW FM 

 

y2 <-noise(4096,2,1e-11,1,1) 
plot(y2) 

bs(y2,1,1) 
write(y2,"C:\\Data\\y2.frd",1) 

 

[1] Basic Statistics: 

[1] File = y2 

[1] Type = Frequency 

[1] Tau = 1 

[1] # Points = 4096 

[1] Max = 7.63263284355859e-10 

[1] Min = -6.63158350087911e-10 

[1] Span= 1.42642163444377e-09 

[1] Mean = 6.91003326225927e-27 

[1] Median = -1.93595507701568e-12 

[1] MAD = 3.84900008281505e-10 

[1] Std Dev = 3.38618639221366e-10 

[1] Sigma = 1e-11 

[1] nid = -0.290301177620439 

[1] Alpha = -2.29030117762044 

[1] Noise = RW FM 

 

 

This table shows six examples of power law phase and frequency noise from W PM (a=2) to RW FM 

(a=-2), where RW PM and W FM have the same a=0.  The data plots are for their respective phase or 

frequency data types, and Stable32 Stats results are shown to their right.  The Basic Statistics listings 

(with extra nid items) are in the panel below that, and show the same results.  The bottom left panel of 

each set shows the R commands used to generate the noise, plot and analyze it, and save it to a file. 



 50 

Appendix 5 

Regression Analysis for Phase and Frequency Data 

 
 

Frequency Offset 
 

Data 

 

Method R Code Remarks 

 

 

Phase 

Linear fit to slope 
x(t)=a+bt, y(t)=b 

t<=1:length(x) 

lm(x~t) 

 

Common 

Average of 1
st
 differences 

y(t)=[x(t+)-x(t)]/ 

f=mean(diff(x))  

Endpoints 
slope=(x[n]-x[1])/(n-1) 

n=length(x) 

f=(x[n]-x[1])/(n-1) 
Match endpoints 

Freq Arithmetic average (mean) f=mean(y) Most common 
 

Frequency Drift 
 

 

 

 

 

 

 

 

 

Phase 

Quadratic fit 
x(t)=a+bt+ct², where 

y(t)=x'(t)=b+2ct, 

slope=y'(t)=2c 

t<=1:length(x) 

t2<-t^2 

lm(x~t+t2) 

  

Most common 

Average of 2
nd

 differences 
y(t)=[x(t+)-x(t)]/, 

slope=[y(t+)-y(t)]/ = 

[x(t+2)-2x(t+)+x(t)]/ 

² 

d=mean(diff(x,1,2)) May have numerical 

precision problems 

3-point fit 
slope=4[x(n)-

2x(n/2)+x(1)]/(n)² 

n=length(x) 

d=4*(x[n]-

2*x[floor(n/2)]+x[1])/ 

((n*tau)^2) 

 

Greenhall fit 
4-point cumulative sum 

estimator using start, 

10%, 90% & end points 

w=cumsum(x) 

n=length(w) 

d=-4*w[1]+ 

5*w[floor(n/10)]-

5*w[floor(9*n/10)]+4*w[n] 

d=d*50/(3*n*n*n) 

 

Freq Linear fit to slope 
y(t)=a+bt, y’(t)=b 

t<=1:length(y) 

lm(y~t)  
See example below 

Bisection fit 
slope=2 [ y(2nd half) - 

y(1st half) ] / (n·t), 

where n=# points 

n=length(y) 

h1<-y[1]:y[floor(n/2)] 

h2<-y[floor(n/2)+1]:y[n] 

m1=mean(h1) 

m2=mean(h2) 

d=2*(m2-m1)/(n*tau) 

Uses averages of first 

and last halves of data 

 

Nonlinear Models for Aging Stabilization 
 

Freq Log 
y(t)=a·ln(bt+1)+c, 

slope=y'(t)=ab/(bt+1) 

t<=1:length(y) 

> a=initial estimate 

> b=initial estimate 

> c=initial estimate 

> nls(rafs ~ 

a*(log(b*t+1))+c, 

start=list(a=a,b=b,c=c)) 

MIL-O-55310B 
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Diffusion 
y(t)=a+b(t+c)^½, 

slope=y'(t)=½·b(t+c)^-½. 

t<=1:length(y) 

> a=initial estimate 

> b=initial estimate 

> c=initial estimate 

> nls(rafs ~ 

a+b*((t+c)^0.5), 

start=list(a=a,b=b,c=c)) 

 

 

Prewhitening Methods 
 

Phase Remove Slope Calc slope (see above), then: 
for(i in 1:length(x)) 

x[i]=x[i]-i*slope 

 

Freq Remove Drift Calc drift (see above), then: 
for(i in 1:length(y)) 

y[i]=y[i]-i*slope 

Both Remove AR(1) fit 

 z(t)=z(t+1) - 
r(1)·z(t) 

w=acf(z) 

r1=w[1] 

for(i in 1:length(z)) 

z[i]=z[i+1]-r1*z[i] 

z is x or y. 

r(1)=lag 1 autocorrela-

tion coefficient. 

 

 

To plot frequency data with a regression line: 

 
> plot(d,type="s",ylab="Freq") 

> t<-1:length(d) 

> fit<-lm(d~t) 

> abline(fit,col="red") 
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Appendix 6 

R code for Frequency Stability Analysis Package 

fsa.R 

 
# R Functions for Basic Frequency Stability Analysis 
# W.J. Riley 
# Hamilton Technical Services, Beaufort, SC 29907 USA 
# License: MIT 
# Version 1.0 
# May 18, 2020 
 
# Packages required 
library(allanvar) # For avar() and avari() 
library(RobPer) # For TK95() 
library(zoo) # For rollapply() 
 
# Note that the code for the fsa.R functions does not include argument validation, 
# nor do they handle data with gaps. 
 
# Function to average phase data 
pavg<-function(x,af=2) 
{  
  seed<-c(TRUE,rep(FALSE,af-1)) 
  cont<-rep(seed,ceiling(length(x)/af))[1:length(x)] 
  return(x[which(cont)])  
} 
 
# Function to average frequency data 
favg<-function(data,af=2) 
{ 
  return(rollapply(data,width=af,by=af,FUN=mean)) 
} 
 
# Function for phase to frequency conversion 
ptof<-function(x,tau=1) 
{ 
  return(diff(x)/tau) 
} 
 
# Function for frequency to phase conversion 
ftop<-function(y,tau=1) 
{ 
  return(diffinv(y)*tau) 
} 
 
# Function to generate power law noise 
noise<-function(num,alpha,sigma,type=0,tau=1) 
{ 
  z<-TK95(num,alpha) 
  if(type==0) d<-padev(z,tau) 
  else d<-fadev(z) 
  z=(z/d)*sigma 
  m=mean(z) 
  z=z-m 
  return(z) 
} 
 
# Function to find the noise type using the lag 1 ACF method 
nid<-function(z) 
{ 
  nD=0 # Difference order 
  # Save original data 
  zz<-z 
  # Calc lag 1 autocorrelation r1 
  r1=acf(z,1, "cor",F) 
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  r1=r1$acf[2] 
  # Find d = r1/(1+r1) 
  d=r1/(1+r1) 
  # If d<0.25, must apply increment operator 
  if(d>0.25) 
  { 
    while(d>=0.25) 
    { 
      # Take 1st differences 
      z<-diff(z) 
      nD=nD+1 
      # Calc lag 1 autocorrelation r1 
      r1=acf(z,1, "cor",F) 
      r1=r1$acf[2] 
      # Find d = r1/(1+r1) 
      d=r1/(1+r1) 
    } 
  } 
  # Calc alpha 
  alpha=-2*d -2*nD +2 
  # Restore original data 
  z<-zz 
  return (alpha) 
} 
 
# Function to show basic statistics for phase or frequency data 
bs <- function(z,type=0,tau=1) 
{ 
  print("Basic Statistics:", quote=FALSE) 
  txt=paste("File =", deparse(substitute(z))) 
  print(txt, quote=FALSE) 
  if(type==0) 
  { 
    print("Type = Phase", quote=FALSE) 
  } 
  else 
  { 
    print("Type = Frequency", quote=FALSE) 
  } 
  txt=paste("Tau =", tau) 
  print(txt, quote=FALSE) 
  txt=paste("# Points =", length(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Max =", max(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Min =", min(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Span=", max(z)-min(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Mean =", mean(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Median =", median(z)) 
  print(txt, quote=FALSE) 
  txt=paste("MAD =", mad(z)) 
  print(txt, quote=FALSE) 
  txt=paste("Std Dev =", sqrt(var(z))) 
  print(txt, quote=FALSE) 
  if(type==0) # Phase data 
  { 
    txt=paste("Sigma =", padev(z,tau)) 
    print(txt, quote=FALSE) 
    # txt=paste("nid =", nid(z)) 
    # print(txt, quote=FALSE) 
    alpha=nid(z) 
  } 
  else # Freq data 
  { 
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    txt=paste("Sigma =", fadev(z)) 
    print(txt, quote=FALSE) 
    # txt=paste("nid =", nid(z)) 
    # print(txt, quote=FALSE) 
    alpha=nid(z)-2 
  } 
  txt=paste("Alpha =", alpha ) 
  print(txt, quote=FALSE) 
  if(alpha>1.5) 
  { 
    txt=paste("Noise = W PM") 
    print(txt, quote=FALSE) 
  } 
  else if(alpha>0.5) 
  { 
    txt=paste("Noise = F PM") 
    print(txt, quote=FALSE) 
  } 
  else if(alpha>-0.5) 
  { 
    txt=paste("Noise = W FM") 
    print(txt, quote=FALSE) 
  } 
  else if(alpha>-1.5) 
  { 
    txt=paste("Noise = F FM") 
    print(txt, quote=FALSE) 
  } 
  else 
  { 
    txt=paste("Noise = RW FM") 
    print(txt, quote=FALSE) 
  } 
  plot(z) 
} 
 
# Function to count outliers in phase or frequency data 
co <- function(z, limit=5) 
{ 
  # Find MAD 
  m=mad(z) 
  # Count outliers 
  n=sum(z<(-m*limit))+sum(z>(m*limit)) 
  return (n) 
} 
 
# Function to calculate the ADEV for phase data 
padev <- function (x, tau=1) 
{ 
  N=length(x) 
  s=0 
  for (i in 1:(N-2)) 
  { 
    s = s + (x[i+2]-(2*x[i+1])+x[i])^2 
  } 
  av = s/(2*(tau^2)*(N-2)) 
  return (sqrt(av)) 
} 
 
# Function to calculate the ADEV for frequency data 
fadev <- function(y) 
{ 
  N=length(y)  
  s=0 
  for (i in 1:(N-1)) 
  { 
    s = s + (y[i+1]-y[i])^2 
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  } 
  av=s/(2*(N-1)) 
  return (sqrt(av)) 
} 
 
# Function to calculate the overlapping Allan deviation from phase data 
poadev <- function(x, tau=1, m=1) 
{ 
  N=length(x) 
  s=0   
  for(i in 1:(N-2*m)) 
  { 
    s = s + (x[i+2*m]-2*x[i+m]+x[i])^2 
  } 
  s = s/(2*m^2*(N-2*m)*tau^2) 
  return (sqrt(s)) 
} 
 
# Function to calculate the overlapping Allan deviation from frequency data 
foadev <- function(y, tau=1, af=1) 
{ 
  x=ftop(y,tau) 
  ad=poadev(x,tau,af) 
  return (ad) 
} 
 
# Function to calculate the overlapping Allan deviation from phase or data 
# over a range of octave averaging factors 
adevrun <- function(z, type=0, tau=1) 
{ 
  # If frequency data, convert it to phase data 
  if(type==1) 
  { 
    x<-ftop(z) 
  } 
  else 
  { 
    x<-z 
  }   
  # Initializations 
  N=length(x) 
  af=1 
  # Loop thru AFs up to limit, calculating ADEV 
  # The maximum AF is floor(N/4) 
  while(af<=floor(N/4)) 
  { 
    ad=poadev(x,tau,af) 
    print(paste0("AF= ",af,"  ADEV=",ad)) 
    af=af*2     
  } 
} 
 
# Function to calculate Modified Allan deviation 
# MVAR for phase data 
# Argument tau is basic data sampling interval 
# Each analysis tau is tau*m 
# where argument m is averaging factor 1 to N/3 
pmdev<-function(x,tau=1,m=1) 
{ 
  N=length(x) 
  mvar=0 
  # Outer loop 
  for(j in 1:(N-3*m+1)) 
  { 
    s=0 
    # Inner loop 
    for(i in j:(j+m-1)) 
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    { 
      s=s+(x[i+(2*m)]-2*x[i+m]+x[i]) 
    } 
    mvar=mvar+s^2 
  } 
  # Scaling 
  mvar=mvar/(2*m^2*m^2*tau^2*(N-3*m+1)) 
  return (sqrt(mvar)) 
} 
 
# Function to calculate the Hadamard deviation for phase data 
phdev <- function (x, tau=1) 
{ 
  N=length(x) 
  s=0 
  for (i in 1:(N-3)) 
  { 
    s = s +(x[i+3] -3*x[i+2] +3*x[i+1] -x[i])^2 
  } 
  hv = s/(6*(tau^2)*(N-3)) 
  return (sqrt(hv)) 
} 
 
# Function to calculate the Hadamard deviation for frequency data 
fhdev <- function(y) 
{ 
  N=length(y)  
  s=0 
  for (i in 1:(N-2)) 
  { 
    s = s + (y[i+2] -2*y[i+1] +y[i])^2 
  } 
  hv=s/(6*(N-2)) 
  return (sqrt(hv)) 
} 
 
# Find Theo1 per Howe and Peppler (2003) 
# x = phase data vector (1 to N) 
# tau = data sampling interval 
# m = averaging factor (2 to N-1) 
# m must be even 
# Analysis tau = m*tau 
# Stride = 0.75*m*tau 
theo1<-function(x, tau=1, m=2) 
{ 
  # Initializations 
  N=length(x) 
  t1=0 
   
  # Outer sum 
  for( i in 1:(N-m)) 
  { 
    sum=0 
    # Inner sum 
    for( d in 0:((m/2)-1)) 
    { 
      s=(1/((m/2)-d))*((x[i]-x[i-d+(m/2)]+x[i+m]-x[i+d+(m/2)])^2) 
      sum=sum+s 
    } 
    t1=t1+sum 
  } 
 
  # Scaling factor 
  t1=t1/(0.75*(N-m)*(m*tau)^2) 
   
  # Return Theo1 deviation 
  return (sqrt(t1)) 
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} 
 
# Function to calculate and plot a power spectral density 
psd <- function(z, span=10, logx=TRUE, logy=TRUE, title="PSD Plot") 
{ 
  s<-spectrum(z,span) 
  freq<-s$freq 
  psd<-2*s$spec 
 
  if( logx==FALSE & logy==FALSE) 
  { 
    plot(freq,psd,type="l",main=title) 
  } 
  else if(logx==FALSE & logy==TRUE) 
  { 
    plot(freq,log10(psd),type="l",main=title) 
  } 
  else if(logx==TRUE & logy==FALSE) 
  { 
    plot(log10(freq),psd,type="l",main=title) 
  } 
  else(logx==TRUE & logy==TRUE) 
  { 
    plot(log10(freq),log10(psd),type="l",main=title) 
  } 
} 
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Appendix 7 

Adding Frequency Stability Analysis Functionality to R with C++, Rcpp, and Rtools 

 

 

Using C/C++ with R 

 

C or C++ functions may be called from R to provide significantly faster execution.  This can be an im-

portant advantage for core frequency stability analysis functions (e.g., variances) that involve nested 

loops performed on large data arrays.  This appendix briefly describes how that can be done for a Win-

dows R installation.  

 

Rcpp and Rtools 

 

The easiest way to use C/C++ code in R is with the Rcpp and Rtools tool chain.  Rcpp supports calling 

C++ from R, while Rtools compiles C++ code under R.  The C++ code for the small functions usually 

involved closely resembles plain C with the significant advantage of easier memory management, and 

Rcpp is much easier to use than the older C interface.  The current version 4.0.0 of R requires rtools40 

which can be installed on a 64-bit Windows system with rtools40-x86_64.exe.  As usual, one should in-

stall the latest version of R, RStudio and Rtools (see: https://cran.r-project.org/bin/windows/Rtools/ and 

follow the instructions therein). 

 

Then, the Rcpp/Rtools environment can be verified with the following on the R console command line 

(see “Getting started with C++” in “High performance functions with Rcpp” at adv-r.had.co.nz): 

 
> cppFunction('int add(int x, int y, int z) 

+ { 

+   int sum = x + y + z; 

+   return sum; 

+ }') 

> add(1,2,3) 

[1] 6 

 

The approach shown above using cppFunction() is fine for a small piece of C++ code, but it is more 

common for a larger project to call C++ code from a separate .cpp source file that begins with: 

 
#include <Rcpp.h> 

Using namespace Rcpp; 

// [[Rcpp::export]] 

 

and is brought into R using sourceCpp(“filename.cpp”). 

 

For example, this C++ code in size.cpp calculates the size of a data vector: 

 
#include <Rcpp.h> 

using namespace Rcpp; 

// [[Rcpp::export]] 

double size(NumericVector x) 

{ 

    return x.size();  

} 

 

which can be compiled and run in R with: 

https://cran.r-project.org/bin/windows/Rtools/
../Documents/My%20Documents/adv-r.had.co.nz
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> library(Rcpp) 

> 

> sourceCpp("C:\\R\\size.cpp") 

> 

> d<-c(1:100) 

> length(d) 

[1] 100 

> size(d) 

[1] 100 

 

The R, RStudio, Rcpp and Rtools installation is working nicely and one can now quite easily write, 

compile, and run C++ functions in R to perform frequency stability analysis.  In particular, these func-

tions can leverage existing C code to obtain better performance along with the convenience of R.  

 

Timing Function Execution 

 

The time required for a function to execute in R can be determined by successive calls to the 

Sys.time() function: 

 
t1<-Sys.time() 

some_function_to_be_timed() 

t2<-Sys.time() 

t2-t1 

 

where the code needs to be executed as a block.  For example, we can generate 10,000 points of W FM 

noise phase data using the noise() function from the fsa.R package with: 

 
> d<-noise(10000,0,1,0,1) 

 

 and time the execution of the theo1() function from the fsa.R package with: 

 
> t1<-Sys.time() 

> theo1(d,1,5000) 

[1] 0.0007709487 

> t2<-Sys.time() 

> t2-t1 

Time difference of 2.884525 secs 

 

We can compare that execution time with the same Thêo1 function (named theo instead of theo1) im-

plemented in C++ code as follows: 
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#include <Rcpp.h> 
using namespace Rcpp; 
 
// [[Rcpp::export]] 
 
double theo(NumericVector x, double tau, int m) 
{ 
  // Note: x is 0-based 
  // Local variables 
  int i; // Outer index 
  int d; // Inner index 
  int N; // # phase data points 
  double t1; // Theo1 
  double sum; // Inner sum 
  double s; // Partial sum 
   
  // Initializations 
  N=x.size(); 
  t1=0; 
   
  // Outer sum 
  for(i=1; i<=(N-m); i++) 
  { 
    sum=0; 
    // Inner sum 
    for(d=0; d<=((m/2)-1); d++) 
    { 
      s=(x[i-1]-x[i-d+(m/2)-1]+x[i+m-1]-x[i+d+(m/2)-1]); 
      sum+=(s*s/((m/2)-d)); 
    } 
    t1+=sum; 
  } 
 
  // Scaling factor 
  t1/=(0.75*(N-m)*m*m*tau*tau); 
   
  // Return Theo1 deviation 
  return sqrt(t1); 
} 
 

The theo() function is compiled with: 

 
> sourceCpp("C:\\R\\theo.cpp") 

 

and executed, with timing, with:  

 
> t1<-Sys.time() 

> theo(d,1,5000) 

[1] 0.0007709487 

> t2<-Sys.time() 

> t2-t1 

Time difference of 0.01994205 secs 

 

The R version of Thêo1 takes a significant 2.88 seconds to execute while the C++ version takes only 

0.02 second, clearly demonstrating the big advantage of using C++ to implement lengthy functions in R. 

 

As a final example, here is a C++ function that can be used with R to calculate the Total deviation from 

phase data.  Note that any needed bias correction must be applied separately.
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/*****************************************************************************/ 
/*                                                                           */ 
/*                                  totdev()                                 */ 
/*                                                                           */ 
/*      Function to calculate TOTDEV using doubly reflected phase data       */ 
/*      C++ code for use with the R statistical computing environment        */ 
/*                                                                           */ 
/*      Parameters:     NumericVector x  = phase data (double)               */ 
/*                      double tau       = data sampling interval            */ 
/*                      int af           = analysis averaging factor         */ 
/*                                                                           */ 
/*      Return:         double           = TOTDEV                            */ 
/*                                         or -1 if bad argument error       */ 
/*                                         or -2 if memory alloc error       */ 
/*                                         or -3 if no result error          */ 
/*                                         or -4 if negative variance error  */ 
/*                                                                           */ 
/*      Install:        sourceCpp("path to tc.cpp")                          */ 
/*                                                                           */ 
/*      Call:           totdev(x, tau, af)                                   */ 
/*                                                                           */ 
/*      Notes:          1. Adapted for C++ from FrequenC.DLL TotvarCalc()    */ 
/*                         for use with R.                                   */ 
/*                      2. Function signature changed.                       */ 
/*                      3. Windows/WIN32 code/style removed.                 */ 
/*                      4. Phase data vector w/o start, end or # points.     */ 
/*                      5. No gap handling.                                  */ 
/*                      6. No progress indicator.                            */ 
/*                      7. Calculation is done entirely with a new array.    */ 
/*                         that is deleted after the function closes.        */ 
/*                      8. The phase data need NOT be endmatched before      */ 
/*                         calling this function.                            */ 
/*                                                                           */ 
/*      Reference:      D.A. Howe and C.A. Greenhall, "Total Variance:       */ 
/*                      A Progress Report on a New Frequency Stability       */ 
/*                      Characterization", Proc. 29th PTTI Meeting,          */ 
/*                      December 1997.                                       */ 
/*                                                                           */ 
/*      Revision record:                                                     */ 
/*          06/03/20   Adapted from TotvarCalc() of FrequenC.DLL             */ 
/*                                                                           */ 
/*   (c) Copyright 1997-2020  Hamilton Technical Services  License: MIT      */ 
/*                                                                           */ 
/*****************************************************************************/ 
 
// Headers 
#include <Rcpp.h> 
using namespace Rcpp; 
 
// [[Rcpp::export]] 
 
// TOTDEV Calculation 
double totdev(NumericVector x, double tau, int af) 
{ 
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    // Local variables 
    int i;              // Index 
    int j;              // Auxilary index 
    int n;              // # points (in full vector x) 
    int c=0;            // # analysis points 
 
    double *p=NULL;     // TOTVAR phase array pointer 
    double s=0.0;       // TOTVAR summation 
    double e;           // Phase data value at edge of reflection 
    double totdev;      // Total deviation 
 
    // Initializations 
    n=x.size(); // # phase data points = N 
     
    // Check arguments 
    // AF must be >= 1, tau must be > 0, Max AF is N-1 
    if( (af<1) || (tau<=0.0) || (n<af+1)) 
    { 
     return -1.0; // Bad argument error 
    } 
 
    // Allocate a new "virtual" phase data array to size 3N-4, where N 
    // is the # of phase data points.  This virtual array is the result 
    // of extension by reflection about both endpoints.  N-2 reflected 
    // points are added at both ends of the original phase data. 
    p=new(std::nothrow) double [3*n-4]; 
    if(p==NULL) 
    { 
        return(-2.0); // Error - memory allocation failed 
    } 
 
    // Note that in the referenced paper the index of the virtual phase data 
    // array goes from 3-N (a negative number) to 2N-2 (a positive number), 
    // with the original data having indices from 1 to N.  Our indices start at 
    // 0 and go to 3N-5.  The lower reflected data has indices from 0 to N-3. 
    // The original data in the middle of the virtual array has indices from 
    // N-2 to 2N-3. The upper reflected data has indices from 2N-2 to 3N-5. 
 
    // Copy original phase data array x[] to (headerless) working array p[] 
    // i is the index into the virtual array p[].  j is the variable part 
    // of the index into the original phase data array x[]. 
    j=0; 
    for(i=n-2; i<2*n-2; i++) 
    { 
        p[i]=x[j]; 
        j++; 
    } 
 
    // Fill the lower reflected phase data 
    // These values are twice the first phase data point minus the particular 
    // data point value to be reflected. 
    j=0; 
    e=2*p[n-2]; 
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    for(i=0; i<n-2; i++) 
    { 
        p[i]=e-p[2*n-4-j]; 
        j++; 
    } 
 
    // Fill the upper reflected phase data 
    // These values are twice the last phase data point minus the particular 
    // data point value to be reflected. 
    j=0; 
    e=2*p[2*n-3]; 
 
    for(i=2*n-2; i<3*n-4; i++) 
    { 
        p[i]=e-p[2*n-4-j]; 
        j++; 
    } 
 
    // Calc TOTVAR - See Eq (3) of Reference 
    for(i=n-1; i<2*n-3; i++) 
    { 
        // Sum 2nd differences squared 
        s+=(p[i-af]-2*p[i]+p[i+af])*(p[i-af]-2*p[i]+p[i+af]); 
        c++; 
    } 
 
    // Scale result - See Eq (3) of Reference 
    if(c) 
    { 
        s/=(tau*tau*af*af*2*c); 
    } 
    else 
    { 
        return -3.0; // No results error 
    } 
 
    // Find TOTDEV 
    if(s>0.0) 
    { 
        totdev=sqrt(s); 
    } 
    else  
    { 
        return 4.0; // Negative variance error 
    } 
 
    // Free memory 
    delete [] p; 
 
    return(totdev);  // Return Total deviation 
} 
 
/*****************************************************************************/ 
 


