
 1

Frequency Stability Analysis Using R

W.J. Riley

Hamilton Technical Services

Beaufort, SC 29907 USA

bill@wriley.com

Rev. C June 4, 2020

ABSTRACT

This document describes techniques for fre-

quency stability analysis using as their basis the

R program for statistical computing and

graphics. It describes how R can be used for

quantifying the stability of a frequency source in

the time and frequency domains, providing in-

formation about practical methods for conduct-

ing such an analysis, including an R package of

functions for that purpose.

1 INTRODUCTION

R is a programming language and free software

environment for statistical computing and

graphics supported by the R Foundation for Sta-

tistical Computing
1
. It runs on a large number

of UNIX/Linux, Windows and MacOS plat-

forms. C/C++ and Fortran programs can be

linked for speed and efficiency. Much useful

information about the R language and its pro-

gramming environment will be found in Refer-

ence [3]
2
.

Why would someone want to use R for frequen-

cy stability analysis rather than, say, a special-

purpose tool like the comprehensive and freely-

1
 R Development Core Team (2010). R: A language and

environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. ISBN 3-900051-

07-0, URL http://www.R-project.org.
2
 This document refers to the original 2007 version which

is available as a free download (see [3]).

available Stable32
3
 program? Perhaps to allow

greater flexibility and support experimentation

with the underlying algorithms, or to generate

plainer graphical results more suited for publica-

tion and presentations. The R computing envi-

ronment is better suited to performing specific,

perhaps customized, functions rather than sup-

porting a large integrated application. The R

console resembles the UNIX command line,

with small, tersely-named, single-purpose func-

tions. Larger functions can easily be built by

combining them on-screen or in a script. The

programming environment resembles a C or Py-

thon interpreter, with easy variable handling and

memory management, which encourages calcu-

lator-like experimentation and testing. RStudio

is available as a GUI R programming environ-

ment.

R has become somewhat of a standard for gen-

eral-purpose and academic statistical analysis, is

free, and is well-supported, including many ad-

ditional packages. But, except for basic Allan

variance functions (see Section 3.1 below),

those do not directly support frequency stability

analysis. This paper will (hopefully) improve

that. Related R spectral analysis functionality is

available in Reference [2] and its supporting R

code
4
.

3
 The Stable32 program and its documentation is freely

available from the International Electrical and Electronic

Engineers (IEEE) Ultrasonics, Ferroelectrics, and Fre-

quency Control (UFFC) Society at: https://ieee-

uffc.org/frequency-control/frequency-control-

software/stable32/.
4
 See: http://faculty.washington.edu/dbp/sauts.html

mailto:bill@wriley.com
http://www.r-project.org/
https://rstudio.com/
https://ieee-uffc.org/frequency-control/frequency-control-software/stable32/
https://ieee-uffc.org/frequency-control/frequency-control-software/stable32/
https://ieee-uffc.org/frequency-control/frequency-control-software/stable32/
http://faculty.washington.edu/dbp/sauts.html

 2

1.1 Getting Started with R

This document is not intended as a tutorial on R.

We will simply say that one should start by

downloading and installing the R software

package from www.R-project.org, and consult

the material there along with other on-line

sources and books (such as Reference [3] to the

extent needed. If you already have R installed,

it is recommended that you re-install the latest

version. Then, if new to R, one can try com-

mands to start to become familiar with it.

We will not describe a complete R package of

functions for frequency stability analysis (alt-

hough such a collection would be desirable), but

rather simply show a number of individual func-

tions for certain key operations. The R envi-

ronment favors the use of many small single-

purpose functions, and you can build up a col-

lection of those to suit you specific needs.

We show R commands in red as in the default R

console.

1.2 R Examples

The examples of R code herein use R 4.0.0 un-

der Windows and are intended to illustrate its

use for frequency stability analysis.

Make sure that you have full read/write permis-

sion to the R library folder on your computer.

Packages can then be installed and loaded using

the Packages/Install package(s)… and Load

package… menu items. The following packag-

es should be installed and loaded for the exer-

cises herein:

 ‘RobPer’ (for TK95())

 ‘sazedR’ (for downsample())

 ‘allanvar’ (for Allan variance, etc.)

 ‘avar’ (for Allan variance)

 ‘zoo’ (for rollapply())

 ‘fsa’ (see Appendix 6)

1.3 R Frequency Stability Analysis

This document is intended to introduce a fre-

quency stability analyst to the use of R for that

purpose. It leads a new R analyst through a

number of examples emphasizing analysis tech-

niques rather than program operation. A key

aspect of the tutorial is the ability to generate

power law noise as test data to use for exploring

the various analysis methods.

This document contains basic information about

some aspects of frequency stability analysis,

with references to further details (e.g., the

math), principally the Reference [5] Handbook

of Frequency Stability Analysis. Examples are

included for some topics to stimulate further

study. It is recommended that, after reading

about a topic in this document, the reader con-

sult the referenced section of the Handbook, the

references cited herein, and then their refer-

enced documents as you get deeper into these

subjects.

Most analysts who use the techniques of fre-

quency stability analysis have frequency sources

they wish to characterize and measuring systems

for doing so. But all users of precision frequen-

cy sources need to understand those techniques,

and hands-on experience with them, using actu-

al or simulated data, is the best way to become

familiar with them.

2 TIME SERIES ANALYSIS

Frequency stability analysis is an example of

time series analysis which applies statistical

measures to describe the properties of a time-

ordered set of data, in this case usually either

phase data in seconds or dimensionless fraction-

al frequency deviations. The analyses can be

performed in either the time or frequency do-

main. Chapter 22 of The R Book is concerned

with Time Series Analysis.

The field of time series analysis is very broad

and well-established, and an internet search will

produce a vast amount of material. In the case

of frequency source (“oscillator”, “frequency

standard” or “clock”) characterization one is

typically concerned with describing a finite

sample of clock data for average frequency,

slow trends (“drift” and “aging”) and shorter-

term noise-like fluctuations. The latter are often

described in the time domain by variances and

http://www.r-project.org/

 3

in the frequency domain by spectral densities.

More specifically, there are specialized statisti-

cal variances (e.g., the Allan variance, AVAR)

and spectral density types (e.g., the SSB phase

noise, L(f), dBc/Hz) that have been developed

for frequency stability analysis. Those

measures can be implemented by extensions to

the basic R package.

Frequency stability analysis generally applies to

equally-spaced discrete phase or frequency

measurements (a time series) taken at a particu-

lar measurement interval denoted by the lower-

case Greek letter tau (). Other words used for

this quantity are sampling interval, measure-

ment time, sampling time or averaging time. The

measurement and sampling terms are usually

associated with the measurement process itself,

while the averaging time applies to the analysis.

The basic measurement interval is often denoted

as 0 while the analysis averaging time is simply

called . As noted above, phase data have units

of seconds, while frequency data are dimension-

less
5
 fractional frequency.

Fractional frequency data can be converted to a

longer sampling time by arithmetic averaging.

That averaging can be performed by a function

similar to downsample() in the ‘sazedR’

package
6
:

favg<-function(data,af=2)

+ {

+ return(rollapply(data,width=af,

+ by=af,FUN=mean))

+ }

For example:

>y<-1:20

>y

[1] 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

> w<-favg(y, 4)

> w

2.5 6.5 10.5 14.5 18.5

The function returns the averaged frequency

points.

5 Units of Hz/Hz are sometimes associated with fractional

frequency values, but that seems rather awkward.
6
See:

https://www.google.com/search?q=package%20sazedR

Similarly, phase data can be converted to a

longer sampling time by downsampling (omit-

ting intermediate points). That downsampling

can be accomplished by another downsample()

function
7
:

> pavg<-function(x,af)

+ {

+ seed<-c(TRUE,rep(FALSE,af-1))

+ cont<-

+ rep(seed,ceiling(length(x)/af))

+ [1:length(x)]

+ return(x[which(cont)])

+ }

> x

 [1] 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

> pavg(x,3)

[1] 1 4 7 10 13 16 19

2.1 Clock Data

The data for analyzing the stability of a frequen-

cy source is a time series comprising a set of

equally-spaced phase (time) or fractional fre-

quency values at some sampling time tau. The-

se data are often accompanied by timetags
8
.

Phase data is generally preferred, and can be

converted to fractional frequency data by their

1
st
 differences divided by tau. Conversely, frac-

tional frequency data can be converted to phase

data (with an arbitrary constant, generally zero)

by numerical integration. Those conversions

can be performed quite simply in R code, e.g.,

freq=diff(phase)/tau and phase=

diffinv(freq)*tau. For example:

> diff(c(2,3,5,18,4,6,4))

[1] 1 2 13 -14 2 -2

> diffinv(c(1,2,13,-14,2,-2))

[1] 0 1 3 16 2 4 2

where the latter values differ from the original

ones by the constant 2.

7
See:http://evertqin.blogspot.com/2011/03/simple-

downsample-function-for-vectors.html
8
 Modified Julian Data (MJD) timetags are commonly

used for time and frequency data, usually including a frac-

tional part having a 1-second resolution.

https://www.google.com/search?q=package%20sazedR
http://evertqin.blogspot.com/2011/03/simple-downsample-function-for-vectors.html
http://evertqin.blogspot.com/2011/03/simple-downsample-function-for-vectors.html

 4

2.2 Power Law Noise

The phase and frequency fluctuations of a fre-

quency source can often be well-described by

one or more power law noise processes having a

spectral characteristic of S(f)=hf

 where  is

the (usually integer) power law exponent rang-

ing from -2 to +2 for noise processes from Ran-

dom Walk FM through White PM (see Figure

1.

White Flicker

Flicker+RW Random Walk

Figure 1. Common Types of Power Law Noise

The various noise types can apply to either phase or fre-

quency data. Note that power law noise doesn’t neces-

sarily have to have an integer exponent – mixtures of

noise types are possible.

Because the white, flicker, and random walk

noise types can apply to either phase or frequen-

cy data, these three noise types, along with

phase-frequency conversions, will cover all five

common noises. Note that those conversions

change the exponent by 2, and that W FM noise

is the same as RW PM (both .

2.3 Power Law Noise Simulation

It is frequently useful to simulate a set of power

law noise as an analysis sample or to model a

frequency source. There are several ways to

accomplish this, and, in R, one is provided by

the TK95(N, alpha) function of the CRAN

‘RobPer” package
9
 based on the power law

noise generation method of Reference [6]. Note

that the alpha argument has the opposite sign as

the symbol  is commonly used for frequency

stability analysis(see Table 1):

9
 See:

https://repo.bppt.go.id/cran/web/packages/RobPer/RobPer

.pdf.

Table 1. TK95() Power Law Noise Generation

Noise Type Color  TK95

alpha Phase Freq

White White 2 0 0

Flicker Pink 1 -1 1

Random Walk Brown 0 -2 2

For example, 2000 points of simulated flicker

noise can be generated and plotted (see Figure

2) with the commands
10

:

> #Generate power law noise with expo

+ nent alpha=1.0

> y<-TK95(N=2000, alpha=1.0)

> t<-seq(along=y)

> #Show time series:

> plot(t,y,type="l",main="Power Law

+ Noise",xlab="t",ylab="y")

Figure 2. Simulated Flicker Noise

The noise exponent need not be an integer, and

the “colored” noise can be considered to be ei-

ther phase or frequency data. The resulting

noise is only close to having a zero mean and its

variance is not known, so these attributes have

to be adjusted and scaled as desired (for exam-

ple, =-0.866 and y(1)=33.07 for the above per

the Stable32 Statistics screen of Figure 3.

10

 Watch out for ” (NG) versus " (OK) quotes in R code.

https://repo.bppt.go.id/cran/web/packages/RobPer/RobPer.pdf
https://repo.bppt.go.id/cran/web/packages/RobPer/RobPer.pdf

 5

Figure 3. Statistics for Simulated F FM Noise

For the following examples, it is useful to gen-

erate and save a set of 5 power law noise data

files each containing 4096 points of the noise

types and file names shown in Table 2:

Table 2. Power Law Noise Data Files

Data Type Noise Type  File Name

Phase White PM +2 W_PM.dat

Flicker PM +1 F_PM.dat

Frequency White FM 0 W_FM.dat

Flicker FM -1 F_FM.dat

RW FM -2 RW_FM.dat

The generated flicker PM data can be saved to

disk with the following command:

> write(y,"C:\\Data\\F_PM.dat",1)

A complete function to generate a certain num-

ber of points of noise having a certain power

law exponent, zero mean and a certain Allan

vaniance (see Appendix 1) would call TK95(),

calculate its ADEV, scale it accordingly and

then remove its average value.

2.4 Data Plots

Data plots are an important analysis tool. The

default R data plot format using simply

plot(x) produces a very reasonable result and

is quite adequate for general purposes, produc-

ing an x-y scatter plot with points denoted by

circles as shown in Figure 5.

Figure 4. Scatter Style Plot

But better formatting is also quite easy. One

improvement (see Figure 5) is to use lines with-

out points for phase data, plot(x,type="l"),

and steps for frequency data (see Figure 6),

plot(y,type="s"), to indicate that they rep-

resent an average over the tau interval, and to

distinguish the two (at least when there are rela-

tively few points):

Figure 5. Line Style Plot

Figure 6. Step Style Plot

Many fancier plotting options are available, es-

pecially for presentation graphics.

 6

3 TIME DOMAIN

FREQUENCY STABILITY

MEASURES

The main measures of domain frequency stabil-

ity in the time domain are a number of special-

ized variances designed to handle divergent

noise types (the standard variance doesn’t con-

verge for <0), distinguish between white and

flicker PM noise, ignore linear frequency drift,

provide higher confidence and support larger

averaging factors. These statistics are described

in Reference [5].

3.1 Allan Variance

The Allan variance, AVAR, (and its square root,

the Allan deviation, ADEV) is the most com-

mon time domain measure of frequency stabil-

ity. Its calculation is supported in R by the Al-

lan Variance Analysis ‘allanvar’ package
11

 that

is freely-available under the GPL-2 license
12

 in

the CRAN
13

 repository. This package contains

several functions for calculating and plotting

ADEV, with an emphasis on describing sensors

and gyros. A sample ADEV calculation and

plot
14

 is shown in Figure 7.

library(allanvar)

#Load data

data(gyroz)

#Allan variance computation using avar

avgyroz <- avar(gyroz@.Data, frequen-

cy(gyroz))

plotav(avgyroz)

11

 See: http://www2.uaem.mx/r-

mirror/web/packages/allanvar/allanvar.pdf .
12

 See Wikipedia: GNU General Public License.
13

 Comprehensive R Archive Network.
14

 See: https://rdrr.io/cran/allanvar/man/plotav.html.

Figure 7. allanvar Calculation and Plot

The “avar” package
15

 also provides several Al-

lan variance-related functions, as shown in Fig-

ure 8. Its emphasis is also on sensors and gyros.

In particular, the avar() function implements the

overlapping AVAR for frequency data, and the

avari() function does so for phase data. Those

functions perform a full AVAR run at octave-

spaced points, and show the results in a table

along with the associated error bars. Note that

one must take the square root of the displayed

av values to obtain the ADEV. The ‘allanvar’

demo is shown in Appendix 1.

Figure 8. avar Calculation and Plot

15

 See: https://cran.r-

project.org/web/packages/avar/avar.pdf.

http://www2.uaem.mx/r-mirror/web/packages/allanvar/allanvar.pdf
http://www2.uaem.mx/r-mirror/web/packages/allanvar/allanvar.pdf
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://rdrr.io/cran/allanvar/man/plotav.html
https://cran.r-project.org/web/packages/avar/avar.pdf
https://cran.r-project.org/web/packages/avar/avar.pdf

 7

This plot includes a very nice display of the

ADEV confidence limits.

In considering the Allan (and related) variances

one needs to keep in mind the following:

1. Several types of variance are used for fre-

quency stability analysis, as follows:

 Allan Variance, AVAR

 Modified Allan Variance, MVAR

 Time Variance, TVAR

 Hadamard Variance, HVAR

 Total Variance, TVAR

 Theo1

2. One should distinguish between a variance

(e.g., AVAR) and its square root, a deviation

(e.g., ADEV). The former is often used in a

general sense, while the latter is almost al-

ways the form actually used.

3. One should distinguish between the ex-

pected value of statistics like AVAR and the

computational means used to estimate them.

For example, one can estimate AVAR with

either non-overlapping or overlapping sam-

ples, where the latter is generally preferred

because of its higher confidence.

4. The confidence level of a statistic (its error

bars, the range of an estimate around its

nominal value at a certain confidence factor)

depends on the statistic, its estimation meth-

od, the number of samples used for the esti-

mate, and the properties of the data (noise)

used in the estimation.

5. The confidence level of an estimate of a var-

iance is generally based on the number of

equivalent Χ
2

degrees of freedom that apply,

a quantity that can be determined either ana-

lytically or by Monte-Carlo simulation.

6. Clock stability data can be in the form of

either phase (time) variations, x(t) in units of

seconds or dimensionless fractional frequen-

cy data, y(t) = Δf/f0 = (f – f0) / f0, where f0 is

the nominal frequency.

7. Since frequency is the rate of change of

phase, frequency data can be obtained from

phase data by taking 1
st
 differences, while

phase data can be obtained from frequency

data by numerical integration.

8. The fluctuations of a frequency source are

often modeled as an integer power law pro-

cess in the frequency domain S(f)=hf


where  is the power law exponent ranging

from -2 to +2 for noise processes from Ran-

dom Walk FM through White PM (see be-

low). Examples of the most common noise

types was shown in Figure 1.

9. The power law noise exponent determines

the slope of a log ADEV versus log tau plot

for three common variance types as shown

in Table 3.

10. Always follow R.W. Hamming’s admoni-

tion that “the purpose of computing is in-

sight, not numbers” [4].

Table 3.

Summary of Stability Plot Noise Slopes

Noise

Type
 Stability Plot Noise Slope

ADEV MDEV TDEV

W PM +2 -1 -3/2 -1/2

F PM +1 -1 -1 0

W FM 0 -1/2 -1/2 +1/2

F FM -1 0 0 +1

RW FM -2 +1/2 +1/2 +3/2

3.2 Other Variances

This author knows of no R packages that sup-

port other variance types such as the Modified

and Hadamard variances. Nor are the two Allan

variance R packages ideal for frequency stabil-

ity analysis. It therefore is desirable to develop

an R package to provide a more complete suite

of time domain frequency stability analysis

tools, preferably written in C for speed and effi-

ciency (see Reference [7]). We take a few steps

toward that goal herein (see Appendices 2 and

7).

3.3 Autocorrelation

R makes obtaining the autocorrelation sequence

of a time series very easy: just type acf(z) to

show it for time series z. You can immediately

see the difference between uncorrelated white

noise and a sample of more divergent flicker or

random walk noise as indicated by their lag 1

autocorrelation scatter plots with

lag.plot(z)as shown in Figure 9.

 8

ACF for White Noise ACF for Flicker Noise

r1=0.017 r1=0.808

Lag 1 Scatter Plots for White and Flicker Noise

Figure 9. White and Flicker Noise

ACF and Lag 1 Scatter Plots

The lag 1 value can be used to identify the pow-

er lay noise type (see the nid() function in Ap-

pendix 2), or to show data quantization.

3.4 Histograms

It is occasionally helpful to examine phase or

frequency data in a histogram. Most such data

is dominated by random noise having the

familar bell-shaped Gaussian distribution as

shown in Figure 10. However a histogram can

show when the data are less normal, perhaps bi-

modal or highly quantized. It is easy to produce

a histogram in R, simply execute hist(z),

where z is the name of a vector of phase or fre-

quency data.

Figure 10. Histogram of White Gaussian Phase

Noise

4 FREQUENCY DOMAIN

FREQUENCY STABILITY

MEASURES

The main measures of frequency stability in the

frequency domain are a number of specialized

power spectral densities (PSD), Sx(f), S(f), and

L (f) for phase data and Sy(f) for frequency data.

4.1 Raw Periodogram

Obtaining a raw periodogram in R is as simple

as typing spectrum(z) where z is the name of

a time series data vector. For example, Figure

11 shows one for a set of phase data in se-

conds
16

:

Figure 11. Raw Periodogram

These data represent the nominally white PM

noise floor of a phase measuring system, with

an ADEV of about 1.4e-11 at their 1-second

sampling interval. The phase noise does indeed

look quite white (the estimated  is +1.7) and

the ADEV does closely follow a 
-1

 characteris-

tic. The scale factor of the spectral intensity ap-

pears to take into account of the noise band-

width because it nearly agrees with that of the

Figure 12 Stable32 Sx(f) plot in sec
2
/Hz. The

Fourier frequency scales are both 0.5 Hz full

scale
17

.

16

 Note that the default spectrum() function uses a 10%

cosine taper, so it is not entirely “raw”. One can elimi-

nate it with taper=0 in the call; there is hardly any dif-

ference in the resulting spectrum.
17

 The # of FFT points is probably 524,288, the next pow-

er of 2 above the # of data points, so, with the 1-second

sampling time, the Fourier bin size is about 1.9 Hz,

which, for a rectangular window, should also be the noise

bandwidth. The plot annotation is different.

 9

Figure 12. Stable32 Sx(f) Plot

To further process the spectrum, we need to ex-

tract and scale the Fourier frequency and PSD

results as numeric vectors:

> s<-spectrum(phase)

> freq<-s$freq

> psd<-2*s$spec

The Fourier frequency is in cycles per sampling

period, which, for the 1-second sampling, makes

it in Hz. Scaling will be needed for other sam-

pling rates. To scale the spectrum so that its

total area is equal to the time series variance, the

PSD values need to be multiplied by 2
18

. We

can then re-plot the spectrum as desired. For

example:

> plot(log10(freq),log10(psd),

type=”l”)

This plot (Figure 13) closely resembles the

unwindowed Stable32 Sx(f) PSD plot. However

it should be noted that the spectrum() func-

tion, by default, prewhitens the time series data

by removing any mean and linear trend before

computing the spectrum (those are not a factor

in this case).

18

 The mean value for the 2
nd

 half of the PSD points is

about 2.5e-22. The approximate area of the flat white

noise spectrum, 2.5e-22 * 0.5 = 1.25e-22 is about equal to

the variance of the phase noise, (1.4e-11)
2
 = 2.0e-22. If a

domain conversion is conducted for W PM with

ADEV=1.4e-11, the resulting Sx(f=1 Hz)=1.3e-22 for a

system BW=0.5 Hz.

Figure 13. PSD Plot with Log Scales

One can eliminate the large amplitude low fre-

quency leakage-induced components as shown

in Figure 14.

plot(log10(freq[-(1:100)]),

log10(psd[-(1:100)]), type="l")

Figure 14. PSD Plot with Low

 Fourier Frequency Components Removed

The Sx(f) PSD data can be converted into more

commonly-used L (f) values using the relation

L(f) = 10 log10[2
2
0

2
Sx(f)] in dBc/Hz where

0 is the RF carrier frequency, as shown in Fig-

ure 15.

Figure 15. L(f) Plot

 10

Smoothed Periodogram

The spectrum can be smoothed with the span

argument of the spectrum() function. Re-

peating the analysis with span=20 results in the

PSD plot of Figure 16.

Figure 16. Smoothed Periodogram

And, after reprocessing to use log plot scales, it

is shown in Figure 17.

Figure 17. Smoothed Periodogram

with Log Scales

4.2 Power Spectral Density Anal-

ysis

Reference [2] contains many examples of power

spectral analysis using R
19

, including several

involving atomic clocks. It describes many

ways to make a spectral analysis have less vari-

ance (more consistency) and less bias.

5 OTHER TOPICS

We conclude with two miscellaneous topics.

Timetags are often associated with phase or fre-

quency data, and they are an important way to

document it. Documentation is vital for any

significant frequency stability analysis, as it also

is for custom R functions and the R program-

ming environment in general.

5.1 Timetags

MJD timetags
20

 are often used with clock data,

generally in the 1
st
 column of a row of data.

There are lots of ways to read a 2-column data

file with timetags. For example: d<-

read.table("C:\\Data\\clock.dat")

will read it into the data.frame table d, and

mjd<-d[1] and phase<-d[2] will separate

the timetags and data into two vectors. One line

of the table can be printed with d[n,] where n

is the line #:
> d[996,]:

 V2 V2

996 58150.8244382 -9.39369201665e-12

And the table data can be plotted with

plot(d)as shown in Figure 18.

19

 R code is available for download, and can be pasted

into the R console command line. It can be hard to make a

snippet of code run by itself, but just looking at it can be

very informative.
20

 The Modified Julian Date (MJD) is based on the astro-

nomical Julian Date, the # of days since noon on January

1, 4713 BC. The MJD is the Julian Date - 2,400,000.5; it

starts at zero at midnight on November 17, 1858.

 11

Figure 18. Data Plot with MJD Time Scale

The mjd and phase values can be put into sepa-

rate vectors with mjd<-d[,1] and phase<-

d[,2].

The MJD timetags could be manipulated to

show the x-scale as hours, etc.

One can obtain the current MJD from the com-

puter clock with:

(as.numeric(Sys.time())/86400)+

40587.

5.2 Documentation

The R program is well-documented, including

on-line manuals and tutorials, and several

books
21

, and the additional packages in the

CRAN repository are generally well-

documented also. The R help system (? fol-

lowed by a package or function name) is quite

effective. The R computing environment lends

itself to creating custom functions, either in an

ad hoc fashion or as a organized collection.

They should usually be brief, perform a single

operation, and have a short intuitive name
22

.

Functions can be saved as a file and loaded with

the source() command. It is important to

document your functions so that one can recall

their purpose and arguments, perhaps following

the format used by the CRAN repository.

21

 For example, The R Book.
22

 See: https://nicercode.github.io/guides/functions/

6 AN R PACKAGE FOR

FREQUENCY STABILITY

ANALYSIS

An example of an R package for frequency sta-

bility analysis is given in Appendix 6, as de-

scribed in Appendices 2 through 4. Appendix 5

contains some R code for regression analysis

and modeling of phase and frequency data.

7 CONCLUSIONS

The R programming environment can be a use-

ful tool for frequency stability analysis. While

less suitable than a specialized application such

as Stable32 for most analysis work, R is particu-

larly effective for academic study and evalua-

tion of new techniques and algorithms with im-

mediate feedback provided by its interpreted

language.

ACKNOWLEDGMENT

The author acknowledges excellent work of the

R Core Team and the CRAN repository in sup-

porting the R language and its computing envi-

ronment, as well as other contributors of R code.

He also recognizes the important work of many

contributors to the field of frequency stability

analysis.

https://www.wiley.com/en-us/The+R+Book%2C+2nd+Edition-p-9780470973929
https://nicercode.github.io/guides/functions/

 12

ACRONYMS AND

ABBREVIATIONS

ACF Autocorrelation Function
ADEV Allan Deviation

AVAR Allan Variance

CRAN Comprehensive R Archive Network
FFT Fast Fourier Transform

F FM Flicker Frequency Modulation

F PM Flicker Phase Modulation
FW FM Flicker Walk Frequency Modulation

FW PM Flicker Walk Phase Modulation

HDEV Hadamard Deviation
HVAR Hadamard Variance

IEEE Institute of Electrical and Electronic Engineers

MAD Median Absolute Deviation
MJD Modified Julian Date

NIST National Institute of Standards and Technology

PM Phase Modulation
PSD Power Spectral Density

R The R Programming Language

RF Radio Frequency
RW FM Random Walk Frequency Modulation

RW PM Random Walk Phase Modulation
RR FM Random Run Frequency Modulation

RR PM Random Run Phase Modulation

SSB Single Sideband
STS Short Term Stability

TDEV Time Deviation

TVAR Time Variance
T&F Time and Frequency

UFFC Ultrasonics Ferroelectrics and Frequency Control

W FM While Frequency Modulation
W PM White Phase Modulation

REFERENCES

1. The R Project for Statistical Computing.

2. D.B. Percival and A.T. Walden, Spectral

Analysis for Univariate Time Series, ISBN

978-1-107-02814-2, Cambridge University

Press, 2020.

3. M.J. Crawley, The R Book, ISBN 978-0-

470-51024-7, John Wiley & Sons, Ltd.,

2007. Note that this link provides a free

download of this entire book (the PDF for-

mat is 25 MB).

4. R.W. Hamming, Numerical Methods for

Scientists and Engineers, ISBN 007025887-

2, McGraw-Hill Book Company, 1973.

5. W.J. Riley, Handbook of Frequency Stabil-

ity Analysis. You can buy a printed copy of

this July 2008 book at Handbook, and down-

load it as NIST Special Publication 1065.

Please note that there are several typos in

SP1065: Eq. 9 on p.15 is missing brackets

around the inner summation – use Eq. 11 in-

stead. Eq. 18 on p. 20 has a spurious m in

the denominator of its leading term. In Eq.

28 on p. 26 the tau exponent should be 2, not

3. The Overlapping Samples section #

should be 5.2.3. And most of the page #s in

the index are wrong.

6. J. Timmer and M. Kőning, “On Generating

Power Law Noise”, Astronomy and Astro-

physics, Vol. 2.3, pp. 1-4, March 1995.

7. R Core Team, Writing R Extensions, 2018.

https://www.r-project.org/
https://www.cambridge.org/core/books/spectral-analysis-for-univariate-time-series/308BC6C9B881E490ED3D4C9F89ED8058
https://www.cambridge.org/core/books/spectral-analysis-for-univariate-time-series/308BC6C9B881E490ED3D4C9F89ED8058
https://archive.org/details/TheRBook_Crawley/mode/2up
https://www.amazon.com/Numerical-Methods-Scientists-Engineers-Mathematics/dp/0486652416
https://www.amazon.com/Numerical-Methods-Scientists-Engineers-Mathematics/dp/0486652416
http://www.stable32.com/Handbook.pdf
http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://cran.r-project.org/doc/manuals/r-release/R-exts.pdf

 13

Appendix 1

Package ‘allanvar’ Demo: demo(allanvar)

> demo(allanvar)

 demo(allanvar)

 ---- ~~~~~~~~

Type <Return> to start :

> #Loading values

> data(gyroz)

> #Allan variance computation using avar

> avgyroz <- avar(gyroz@.Data[1:1000], frequency(gyroz))

[1] "Calculating..."

> plotav(avgyroz)

Waiting to confirm page change...

> abline(1.0+log(avgyroz$time[1]), -1/2, col="green", lwd=4, lty=10)

> abline(1.0+log(avgyroz$time[1]), 1/2, col="green", lwd=4, lty=10)

> legend(0.11, 1e-03, c("Random Walk"))

> legend(2, 1e-03, c("Rate Random Walk"))

> #Allan variance computation using avarn

> avngyroz <- avarn(gyroz@.Data[1:1000], frequency(gyroz))

[1] "Calculating..."

> plotav(avngyroz)

Waiting to confirm page change...

> abline(1.0+log(avngyroz$time[1]), -1/2, col="green", lwd=4, lty=10)

> abline(1.0+log(avngyroz$time[1]), 1/2, col="green", lwd=4, lty=10)

> legend(0.11, 1e-03, c("Random Walk"))

> legend(2, 1e-03, c("Rate Random Walk"))

> ##Allan variance computation using avari

> ##Simple integration of the angular velocity

> igyroz <- cumsum(gyroz@.Data[1:1000] * (1/frequency(gyroz)))

> igyroz <- ts (igyroz, start=c(igyroz[1]), delta=(1/frequency(gyroz)))

> avigyroz <- avari(igyroz@.Data, frequency(igyroz))

[1] "Calculating..."

> plotav(avigyroz)

Waiting to confirm page change...

> abline(1.0+log(avigyroz$time[1]), -1/2, col="green", lwd=4, lty=10)

> abline(1.0+log(avigyroz$time[1]), 1/2, col="green", lwd=4, lty=10)

> legend(0.11, 1e-03, c("Random Walk"))

 14

> legend(2, 1e-03, c("Rate Random Walk"))

> #Ploting all

> plot (avgyroz$time,sqrt(avgyroz$av),log= "xy", xaxt="n" , yaxt="n", type="l",

col="blue", xlab="", ylab="")

Waiting to confirm page change...

> lines (avngyroz$time,sqrt(avngyroz$av), col="green", lwd=1)

> lines (avigyroz$time,sqrt(avigyroz$av), col="red")

> axis(1, c(0.001, 0.01, 0.1, 0, 1, 10, 100, 1000, 10000, 100000))

> axis(2, c(0.00001, 0.0001, 0.001, 0.01, 0.1, 0, 1, 10, 100, 1000, 10000))

> grid(equilogs=TRUE, lwd=1, col="orange")

> title(main = "Allan variance Analysis Comparison", xlab = "Cluster Times (Sec)",

ylab = "Allan Standard Deviation (rad/s)")

> legend(1, 1e-03, c("GyroZ (avar)", "GyroZ(avarn)", "GyroZ(avari)"), fill =

c("blue", "green", "red"))

Warning messages:

1: In plot.xy(xy.coords(x, y), type = type, ...) :

 "log" is not a graphical parameter

2: In plot.xy(xy.coords(x, y), type = type, ...) :

 "log" is not a graphical parameter

3: In plot.xy(xy.coords(x, y), type = type, ...) :

 "log" is not a graphical parameter

>

 15

 16

Appendix 2

R Code for Basic Frequency Stability Analysis Functions

The R code for these functions can be copied to the file fsa.R from Appendix 6.

Basic Frequency Stability Analysis Functions in R package fas.R

Function

Description

Remarks

pavg Average Phase Data Downsample by certain averaging factor

favg Average Frequency Data Average by certain averaging factor

ptof Phase to Frequency Conversion First differences

ftop Frequency to Phase Conversion Numerical integration

noise Generate Power Law Noise TK95 method for certain ADEV

nid Power Law Noise Identification Uses Lag 1 Autocorrelation

bs Show Basic Statistics List basic statistics and show data plot

co Count Outliers Using MAD limit

padev Calculate Allan Deviation for Phase Data At basic sampling interval

fadev Calculate Allan Deviation for Frequency Data At basic sampling interval

poadev Calculate Overlapping ADEV for Phase Data At selected averaging factor

foadev Calculate Overlapping ADEV for Freq Data At selected averaging factor

adevrun Calc overlapping ADEV for an Octave Run At range of octave-s[aced taus

pmdev Calculate Mod Allan Deviation for Phase Data At basic sampling interval – TDEV also

phdev Calculate Hadamard Deviation for Phase Data At basic sampling interval

fhdev Calculate Hadamard Deviation for Freq Data At basic sampling interval

theo1 Calculate the Thêo1 Statistic for Phase Data At selected averaging factor

psd Calculate and Plot a Power Spectral Density PSD may be smoothed, optional log scales

Additional packages required:

allanvar for avar() and avari()

RobPer for TK95()

zoo for rollapply()

A 1000-point data set used as a test suite for frequency stability analysis statistics can be downloaded

from: https://www.wriley.com/tst_suit.dat, and the results for a collection of such statistics will be found

at: http://www.wriley.com/paper1ht.htm, see References [20] and [21] therein. After downloading the

test suite data, it can be read into R with: > ts<-scan("C:\\Data\\test_suite.dat")where the

file name is edited appropriately for where it was stored.

If you prefer, you can generate the test suite yourself with the following R code:

Generate the 1000-point test suite

Initializations

ts<-1:1000

ts[1]=1234567890

Generate data

for(i in 2:1000)

{

 ts[i]=(16807*ts[i-1])%%2147483647

}

https://www.wriley.com/tst_suit.dat
http://www.wriley.com/paper1ht.htm
http://www.wriley.com/00483922.pdf
http://www.wriley.com/00560270.pdf

 17

Scale data

for(i in 1:1000)

{

 ts[i]=ts[i]/2147483647

}

Optionally show and plot the generated data

Increase # R display digits to max

options(digits=22)

ts

plot(ts, type=”l”)

Restore normal # digits

options(digits=7)

Convert freq data to phase data

tsp<- diffinv(ts)

The test data can be confirmed as follows:

> length(ts)

[1] 1000

> ts[1]

[1] 0.5748905

> max(ts)

[1] 0.9957453

> min(ts)

[1] 0.00137176

> mean(ts)

[1] 0.4897745

> median(ts)

[1] 0.4798849

A histogram can be produced with hist(ts).

Notice that these test data are uniformly (not

Gaussian) distributed. That does not affect their

usefulness for testing frequency stability analysis

methods.

Examples of tests with these test data on some of the R functions are as follows:

> fadev(ts)

[1] 0.2922319

> fhdev(ts)

[1] 0.2943883

> ts10<-favg(ts,10)

> length(ts10)

[1] 100

> fadev(ts10)

[1] 0.09965736

> tsp<-ftop(ts,1)

> padev(tsp)

[1] 0.2922319

> phdev(tsp,1)

[1] 0.2943883

> tsp10<-pavg(tsp,10)

> length(tsp10)

[1] 101

> padev(tsp10,1)

[1] 0.9965736

 18

pavg Average Phase Data

Description

Function to average phase data to a larger averaging factor.

Usage

pavg(x, af)

Arguments

x The vector of phase data to be averaged.

af The averaging factor to be applied (default=2)

Return Value

The averaged phase data.

Example

 Average a set of phase data x by an averaging factor of 10:

 pavg(x, 10)

Reference

 R. Everett, “A simple downsample function for vectors in R”, March 2011.

http://evertqin.blogspot.com/2011/03/simple-downsample-function-for-vectors.html

Code:
 # Function to average phase data

pavg<-function(x,af)
{

seed<-c(TRUE,rep(FALSE,af-1))
cont<-rep(seed,ceiling(length(x)/af))[1:length(x)]
return(x[which(cont)])

}

http://evertqin.blogspot.com/2011/03/simple-downsample-function-for-vectors.html

 19

favg Average Frequency Data

Description

Function to average frequency data to a larger averaging factor.

Usage

favg(x, af)

Arguments

y The vector of fractional frequency data to be averaged.

af The averaging factor to be applied (default=2).

Return Value

The averaged frequency data.

Example

 Average a set of frequency data y by an averaging factor of 10:

 favg(y, 10)

Reference

 M. Toller, T. Santos & R. Kern, “Parameter-Free Domain-Agnostic Season Length Detection

in Time, R package ‘sazedR, September 2019.

https://www.google.com/search?q=package%20sazedR

Code
 # Function to average frequency data

favg<-function(data,af=2)
{

(return(rollapply(data,width=af,by=af,FUN=mean))
}

https://www.google.com/search?q=package%20sazedR

 20

ptof Phase to Frequency Conversion

Description

Function to convert phase data to fractional frequency data.

Usage

ptof(x, tau)

Arguments

x The vector of phase data to be converted.

tau The data sampling interval, tau (default=1).

Return Value

The converted fractional frequency data.

Example

 Convert a set of phase data in seconds to dimensionless fractional frequency data for data having

a sampling interval of 10 seconds:

 ptof(x, 10)

Reference

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July

2008 book at Handbook, and download it as NIST Special Publication 1065.

Code
 # Function for phase to frequency conversion

ptof<-function(x,af)
{
 return(diff(x)/tau)
}

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis

 21

ftop Frequency to Phase Conversion

Description

Function to convert fractional frequency data to phase data

Usage

ftop(y, tau)

Arguments

y The vector of fractional frequency data to be converted.

tau The data sampling interval, tau (default=1).

Return Value

The converted phase data.

Example

 Convert a set of dimensionless fractional frequency data to phase data for data having a sampling

interval of 10 seconds:

 ftop(y, 10)

Reference

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July

2008 book at Handbook, and download it as NIST Special Publication 1065.

Code
 # Function for frequency to phase conversion

ftop<-function(y,tau)
{
 return(diffinv(y)*tau)
}

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis

 22

noise Generate Power Law Noise

Description

Function to generate a certain number of points of noise having a certain power law exponent,

zero mean and a certain Allan deviation. The data type can be either phase or frequency with a

certain sampling time for the former.

Imports

 Package RobPer required.

Usage

noise(num, exp, sigma, type, tau)

Arguments

num The number of points to generate.

exp The power law exponent (not necessarily an integer)

 White 0

 Flicker 1

Random Walk 2

Note that these values are not the same as those normally associated with ,

the power law noise exponent used in the field of frequency stability analysis.

Power Law Noise Data Files

Data Type Noise Type  exp

Phase=0 White PM +2 0

Flicker PM +1 1

Frequency=1 White FM 0 0

Flicker FM -1 1

RW FM -2 2

sigma The desired Allan deviation at the basic sampling interval of the data.

type The type of data to be generated, 0=phase, 1=frequency (default=0).

tau The sampling time for the phase data (N/A for frequency data) (default=1)

Return Value

The resulting power law noise data.

Example

 Generate 4096 points of flicker FM noise with AVAR=1e-11:
 y <- noise(4096, 1, 1e-11, 1) # No tau required

 Write these data to a file as frequency data:
write(y,"C:\\Data\\F_FM.frd",1)

Read the data file into a vector:
z<-scan("C:\\Data\\F_FM.frd")

Reference

J. Timmer and M. Kőning, “On Generating Power Law Noise”, Astronomy and Astrophysics,

Vol. 2.3, pp. 1-4, March 1995.

 23

Notes

An offset can be added to the generated data with z=z+offset, and it can be scaled with z=z*scale.

A linear slope can be added with: for(i in 1:length(y)) y[i]=y[i]+i*slope where slope is

the desired slope per sampling interval. Generic filename extensions for phase or frequency data are

typically .dat or .txt. Stable32 optionally uses the extensions .phd and .frd for phase and frequency data

respectively.

Code
 # Function to generate power law noise

noise<-function(num,exp,sigma,type,tau=1)
 {
 z<-TK95(num,exp)
 if(type==0) d<-padev(z,tau)

else d<-fadev(z)
z=(z/d)*sigma

 m=mean(z)
 z=z-m
 return(z)
 }

Test Case

 > y <- noise(4096, 1, 1e-11, 1
> write(y,"C:\\Data\\F_FM.frd",1)

 > plot(y)

Note the correct noise type and sigma at the basic sam-

pling interval, with negligible offset. However the Sta-

ble32 stability plot shows significant departure from a

flicker noise characteristic at longer averaging times,

and the Stable32 autocorrelation plot indicates that the

power law exponent,  is -1.34 rather than the request-

ed -1.

R Data Plot

Stable32 Stats

 24

Stable32 Stability Plot

Stable32 Autocorrelation Plot

 25

nid Power Law Noise Identification

Description

Function to ID the dominant type of power law noise in phase or frequency data using the lag 1

autocorrelation. It requires a minimum of about 30 data points.

Usage

nid(z)

Arguments

z The vector of phase or fractional frequency data to be examined.

Return Value

The estimated power law noise exponent, , at the basic sampling interval.

Example

ID the dominant noise type of a set of phase data:
> nid(x0)
[1] 2.01985990379

The nominal power law noise type is W PM

Reference

W.J. Riley and C.A. Greenhall, “Power Law Noise Identification Using the Lag 1 Autocorrela-

tion,” Proceedings of the 18
th

 European Frequency and Time Forum, April 2004.

Note

 The  value returned by this function refers only to the data itself and not whether it represents

phase or frequency information. Thus the returned value is the correct  for phase data, but 2 must be

subtracted from it for frequency data.

Code
Find noise type using the lag 1 ACF method
nid<-function(z)
{

nD=0 # Difference order
Save original data
zz<-z
Calc lag 1 autocorrelation r1
r1=acf(z,1, "cor",F)
r1=r1$acf[2]
Find d = r1/(1+r1)
d=r1/(1+r1)
If d<0.25, must apply increment operator
if(d>0.25)
{

while(d>=0.25)
{

Take 1st differences
Z<-diff(z)
nD=nD+1
Calc lag 1 autocorrelation r1

http://www.stable32.com/Paper125Preprint.pdf
http://www.stable32.com/Paper125Preprint.pdf

 26

r1=acf(z,1, "cor",F)
r1=r1$acf[2]
Find d = r1/(1+r1)
d=r1/(1+r1)

}
}
Calc alpha
alpha=-2*d -2*nD +2
Restore original data
z<-zz
return (alpha)

}

 27

bs Show Basic Statistics

Description

Function to show the basic statistics and plot for phase or frequency data.

Usage

bs(z, type, tau)

Arguments

z The vector of phase or fractional frequency data to be examined.

type The type of data to be generated, 0=phase, 1=frequency (default=0)

tau The sampling time for the phase data (N/A for frequency data) (default=1)

Return Value

The basic statistics are printed and the data are plotted.

Example

 See Appendix 4

Reference

None – See similar Stable32 Stats function

Note

 The noise type ID covers the range between  = -2 (RW FM) to +2 (W PM)

Code
Function to show basic statistics of phase or frequency data
bs <- function(z,type,tau)
{
 print("Basic Statistics:", quote=FALSE)
 txt=paste("File =", deparse(substitute(z)))
 print(txt, quote=FALSE)if(type==0)
 {
 print("Type = Phase", quote=FALSE)
 }
 else
 {
 print("Type = Frequency", quote=FALSE)
 }
 txt=paste("Tau =", tau)
 print(txt, quote=FALSE)
 txt=paste("# Points =", length(z))
 print(txt, quote=FALSE)
 txt=paste("Max =", max(z))
 print(txt, quote=FALSE)
 txt=paste("Min =", min(z))
 print(txt, quote=FALSE)
 txt=paste("Span=", max(z)-min(z))
 print(txt, quote=FALSE)
 txt=paste("Mean =", mean(z))
 print(txt, quote=FALSE)

 28

 txt=paste("Median =", median(z))
 print(txt, quote=FALSE)
 txt=paste("MAD =", mad(z))
 print(txt, quote=FALSE)
 txt=paste("Std Dev =", sqrt(var(z)))
 print(txt, quote=FALSE)
 if(type==0) # Phase data
 {
 txt=paste("Sigma =", padev(z,tau))
 print(txt, quote=FALSE)
 alpha=nid(z)
 }
 else # Freq data
 {
 txt=paste("Sigma =", fadev(z))
 print(txt, quote=FALSE)
 alpha=nid(z)-2
 }
 txt=paste("Alpha =", alpha)
 print(txt, quote=FALSE)
 if(alpha>1.5)
 {
 txt=paste("Noise = W PM")
 print(txt, quote=FALSE)
 }
 else if(alpha>0.5)
 {
 txt=paste("Noise = F PM")
 print(txt, quote=FALSE)
 }
 else if(alpha>-0.5)
 {
 txt=paste("Noise = W FM")
 print(txt, quote=FALSE)
 }
 else if(alpha>-1.5)
 {
 txt=paste("Noise = F FM")
 print(txt, quote=FALSE)
 }
 else
 {
 txt=paste("Noise = RW FM")
 print(txt, quote=FALSE)
 }
 plot(z)
}

 29

Drift

The least-squares linear drift of a set of fractional frequency data can be determined with the

function call: lm(y~t) where y is the frequency data and t<=1:length(y). It can be re-

moved by: for(i in 1:length(y)) y[i]=y[i]-i*slope, where slope is the calculated

slope.

Similary, the least-squares quadratic drift fit for a set of phase data can be determined by: t2<-

t^2 and lm(x~t+t2) where t<=1:length(x).

 30

co Count Outliers

Description

Function to count the number of outliers in phase or frequency data.

Usage

co(z, limit)

Arguments

z The vector of phase or fractional frequency data to be examined.

limit The MAD factor limit for OK data (default=5)

Return Value

The number of outliers that exceed the MAD*limit.

Reference

Gernot M.R. Winkler, "Introduction to Robust Statistics and Data Filtering," Tutorial at 1993 IEEE

Frequency Control Symposium, June 1993.

Code
Function to count outliers in phase or frequency data
co <- function(z, limit=5)
{
 # Find MAD
 m=mad(z)
 # Count outliers
 n=sum(z<(-m*limit))+sum(z>(m*limit))
 return (n)
}

http://www.stable32.com/ROBSTAT.htm

 31

padev Calculate Allan Deviation for Phase Data

Description

Function to calculate the estimated ADEV of a set of phase data at its basic sampling interval.

Usage

padev(x, tau)

Arguments

x The vector of phase data to be analyzed.

tau The data sampling interval, seconds (default=1).

Return Value

The estimated Allan deviation for the phase data at its basic sampling interval.

Example

 Find the estimated ADEV for a set of phase data:

 padev(x,1)

Reference

 Function avari() in R package ‘allanvar’. This function adapts that code to calculate the

ADEV at a single averaging factor. See: https://rdrr.io/cran/allanvar/src/R/avari.R.

Code
Function to calculate the ADEV for phase data
padev <- function (x, tau=1)
{
 N=length(x)
 s=0
 for (i in 1:(N-2))
 {
 s = s + (x[i+2]-(2*x[i+1])+x[i])^2
 }
 av = s/(2*(tau^2)*(N-2))
 return (sqrt(av))
}

Test Case

 Classic NBS Monograph 140 Annex 8.E frequency values from: B.E. Blair (Editor), Time and

Frequency: Theory and Fundamentals, NBS Monograph 140, Annex 8.E, p. 181, May 1974.

> nbs<-c(892,809,823,798,671,644,883,903,677)

> nbs

[1] 892 809 823 798 671 644 883 903 677

> nbsi<-diffinv(nbs)

> nbsi

 [1] 0 892 1701 2524 3322 3993 4637 5520 6423 7100

> padev(nbsi,1)

 [1] 91.22945

https://rdrr.io/cran/allanvar/src/R/avari.R
http://www.wriley.com/NBS140Annex8E.pdf

 32

fadev Calculate Allan Deviation for Frequency Data

Description

Function to calculate the estimated ADEV of a set of fractional frequency data at its basic sam-

pling interval.

Imports

 Package RobPer required.

Arguments

y The vector of fractional frequency data to be analyzed.

Return Value

The estimated Allan deviation for the frequency data at its basic sampling interval.

Example

 Find the estimated ADEV for a set of frequency data:

 fadev(y)

Reference

 Function avar() in R package ‘allanvar’. This function adapts that code to calculate the

ADEV at a single averaging factor. See: https://rdrr.io/cran/allanvar/src/R/avar.R.

Code
Function to calculate the ADEV for frequency data
fadev <- function(y)
{
 N=length(y)
 s=0
 for (i in 1:(N-1))
 {
 s = s + (y[i+1]-y[i])^2
 }
 av=s/(2*(N-1))
 return (sqrt(av))
}

Test Case

 Classic NBS Monograph 140 Annex 8.E frequency values from: B.E. Blair (Editor), Time and

Frequency: Theory and Fundamentals, NBS Monograph 140, Annex 8.E, p. 181, May 1974.

> nbs

[1] 892 809 823 798 671 644 883 903 677

> fadev(nbs)

[1] 91.22945

https://rdrr.io/cran/allanvar/src/R/avar.R
http://www.wriley.com/NBS140Annex8E.pdf

 33

poadev Calculate Overlapping Allan Deviation for Phase Data

Description

Function to calculate the estimated overlapping ADEV of a set of phase data.

Usage

poadev(x, tau, af)

Arguments

x The vector of phase data to be analyzed.

tau The data sampling interval of the phase data, seconds (default=1).

af The averaging factor for the ADEV estimate (default=1).

Return Value

The estimated Allan deviation for the phase data at a certain averaging factor.

Example

 Find the estimated overlapping ADEV for a set of phase data with tau=1 at AF=10

 poadev(x,1,10)

Reference

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July

2008 book at Handbook, and download it as NIST Special Publication 1065.

Code
Function to calculate the overlapping Allan deviation from phase data
poadev <- function(x, tau=1, m=1)
{
 N=length(x)
 s=0
 for(i in 1:(N-2*m))
 {
 s = s + (x[i+2*m]-2*x[i+m]+x[i])^2
 }
 s = s/(2*m^2*(N-2*m)*tau^2)
 return (sqrt(s))
}

Test Case

1000-Point Test Suite phase data. See: W.J. Riley, “A Test Suite for the Calculation of Time

Domain Frequency Stability”, Proceedings of the 1995 IEEE International Frequency Control

Symposium, pp. 360-366, June 1995. It may be downloaded as frequency data from:

https://www.wriley.com/tst_suit.dat

> poadev(tsp,1,1)

[1] 0.2922319

> poadev(tsp,1,10)

[1] 0.09159953

> poadev(tsp,1,100)

[1] 0.03241343

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://www.wriley.com/tst_suit.dat

 34

foadev Calculate Overlapping Allan Deviation for Frequency Data

Description

Function to calculate the estimated overlapping ADEV of a set of fractional frequency data.

Requires

 Functions ftop() and poadev() in this package.

Usage

foadev(y, tau, af)

Arguments

y The vector of fractional frequency data to be analyzed.

tau The sampling interval of the frequency data, (default=1).

af The averaging factor for the ADEV estimate (default=1).

Return Value

The estimated Allan deviation for the frequency data at a certain averaging factor.

Example

Find the estimated ADEV for a set of frequency data with tau=1 at AF=10.

 fadev(y)

Reference

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July

2008 book at Handbook, and download it as NIST Special Publication 1065.

Note

 It is faster and more efficient to convert frequency data to phase data before calculating the

overlapping Allan deviation for frequency data, thereby avoiding nested summations.

Code
Function to calculate the overlapping Allan deviation from freq data
foadev <- function(y, tau=1, af=1)
{
 x=ftop(y,tau)
 ad=poadev(x,tau,af)
 return (ad)
}

Test Case

 1000-Point Test Suite frequency data. See: W.J. Riley, “A Test Suite for the Calculation of Time

Domain Frequency Stability”, Proceedings of the 1995 IEEE International Frequency Control

Symposium, pp. 360-366, June 1995. . Downloaded from: https://www.wriley.com/tst_suit.dat

> foadev(ts,1,1)

[1] 0.2922319

> foadev(ts,1,10)

[1] 0.09159953

> foadev(ts,1,100)

[1] 0.03241343

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://www.wriley.com/tst_suit.dat

 35

adevrun Calculate Overlapping Allan Deviation for an Octave Run

Description

Function to calculate the estimated overlapping ADEV of a set of phase or frequency data over a

range of octave averaging factors

Usage

adevrun(z, type, tau)

Arguments

z The vector of phase or frequency data to be analyzed.

type The data type, 0=phase, 1=frequency (default=0)

tau The data sampling interval of the data, seconds (default=1).

Return Value

An ‘allanvar’-compatable data frame containing tau, AVAR and error bar values

 for the estimated Allan deviations for the data over a range of octave averaging factors.

Example

 Find the estimated overlapping ADEVs for a set of phase data with tau=1 over a range

of octave averaging factors:

 devrun(x,0,1)

Reference

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July

2008 book at Handbook, and download it as NIST Special Publication 1065.

Code
Function to calculate the overlapping Allan deviation
from phase or data over a range of octave averaging factors
The function writes a table of af and ADEV values
and returns a data frame compatible with the 'allanvar' package
containing time, av (AVAR not ADEV) and error vectors
which can be plotted with plotav()
adevrun <- function(z, type=0, tau=1)
{
 # If frequency data, convert it to phase data
 if(type==1)
 {
 x<-ftop(z)
 }
 else
 {
 x<-z
 }
 # Initializations
 N=length(x)
 af=1
 n=1 # point #
 # Loop thru AFs up to limit, calculating ADEV
 # The maximum AF is floor(N/4)

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis

 36

 # The # stability points is:
 # ceiling(log10(floor(N/4))/log10(2))
 p=ceiling(log10(floor(N/4))/log10(2))
 # Create results table per 'allanvar' package
 # Note that that table has AVAR not ADEV
 time<-1:p
 av<-1:p
 error<-1:p
 while(af<=floor(N/4))
 {
 ad=poadev(x,tau,af)
 print(paste0("AF= ",af," ADEV=",ad))
 av[n]=ad^2
 time[n]=tau*af
 # Equation for error AV estimation per allanvar
 # See Papoulis (1991) for further information
 error[n]=1/(sqrt(2*(N/(af-1))))
 af=af*2
 n=n+1
 }
 return (data.frame(time,av,error))
}

Test Case

1000-Point Test Suite frequency data. See: W.J. Riley, “A Test Suite for the Calculation of Time

Domain Frequency Stability”, Proceedings of the 1995 IEEE International Frequency Control

Symposium, pp. 360-366, June 1995. It may be downloaded from:

https://www.wriley.com/tst_suit.dat.

> r<-adevrun(ts,1,1)

[1] "AF= 1 ADEV=0.29223187810676"

[1] "AF= 2 ADEV=0.201016042170939"

[1] "AF= 4 ADEV=0.144791307218438"

[1] "AF= 8 ADEV=0.1057038500787"

[1] "AF= 16 ADEV=0.0619147784187454"

[1] "AF= 32 ADEV=0.0480821426212821"

[1] "AF= 64 ADEV=0.036237212985705"

[1] "AF= 128 ADEV=0.0276738558206943"

> plotav(r)

https://www.wriley.com/tst_suit.dat

 37

Equivalent Stable32 stability table and plot results are as follows:

STATISTICS FOR FILE: test_suite.dat

 Frequency Data Points 1 thru 1000 of 1000

 Maximum = 9.957453e-01

 Minimum = 1.371760e-03

 Average = 4.897745e-01

 Sigma Type: Overlapping Allan

 Confidence Factor = 0.683

 Deadtime T/Tau = 1.000000

 AF Tau # Alpha Min Sigma Sigma Max Sigma

 1 1.0000e+00 999 0 2.8515e-01 2.9223e-01 2.9987e-01

 2 2.0000e+00 997 0 1.9520e-01 2.0102e-01 2.0738e-01

 4 4.0000e+00 993 0 1.3931e-01 1.4479e-01 1.5098e-01

 8 8.0000e+00 985 0 1.0038e-01 1.0570e-01 1.1198e-01

 16 1.6000e+01 969 0 5.7696e-02 6.1915e-02 6.7217e-02

 32 3.2000e+01 937 0 4.3654e-02 4.8082e-02 5.4202e-02

 64 6.4000e+01 873 0 3.1755e-02 3.6237e-02 4.3377e-02

 128 1.2800e+02 745 0 2.3045e-02 2.7674e-02 3.7027e-02

 38

pmdev Calculate Modified Allan Deviation for Phase Data

Description

Function to calculate the estimated MDEV of a set of phase data.

Usage

pmdev(x, tau, af)

Arguments

x The vector of phase data to be analyzed.

tau The data sampling interval of the phase data, seconds (default=1).

af The averaging factor for the MDEV estimate (default=1).

Return Value

The estimated Modified Allan deviation for the phase data at a certain averaging factor.

Example

 Find the estimated MDEV for a set of phase data with data sampling interval tau=1 and AF=10

 pmdev(x,1,10)

Reference

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July

2008 book at Handbook, and download it as NIST Special Publication 1065.

Code
Function to calculate Modified Allan deviation
MVAR for phase data
Argument tau is basic data sampling interval
Each analysis tau is tau*m
where argument m is averaging factor 1 to N/3
pmdev<-function(x, tau=1, m=1)
{
 N=length(x)
 mvar=0
 # Outer loop
 for(j in 1:(N-3*m+1))
 {
 s=0
 # Inner loop
 for(i in j:(j+m-1))
 {
 s=s+(x[i+(2*m)]-2*x[i+m]+x[i])
 }
 mvar=mvar+s^2
 }
 # Scaling
 mvar=mvar/(2*m^2*m^2*tau^2*(N-3*m+1))
 return (sqrt(mvar))
}

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis

 39

Test Case

1000-Point Test Suite phase data. See: W.J. Riley, “A Test Suite for the Calculation of

TimeDomain Frequency Stability”, Proceedings of the 1995 IEEE International Frequency Con-

trol Symposium, pp. 360-366, June 1995. It may be downloaded as frequency data from:

https://www.wriley.com/tst_suit.dat.

> pmdev(tsp)

[1] 0.2922319

> pmdev(tsp,1,10)

[1] 0.06172376

> pmdev(tsp,1,100)

[1] 0.02170921

Time Deviation

 One can easily get the time deviation, TDEV, from MDEV by multiplying by sqrt(
2
/3):

 > pmdev(tsp)*sqrt(1*1/3)

 [1] 0.1687202

https://www.wriley.com/tst_suit.dat

 40

phdev Calculate Hadamard Deviation for Phase Data

Description

Function to calculate the estimated HDEV of a set of phase data at its basic sampling interval.

Usage

phdev(x, tau)

Arguments

x The vector of phase data to be analyzed.

tau The data sampling interval, seconds (default=1).

Return Value

The estimated Hadamard deviation for the phase data at its basic sampling interval.

Example

 Find the estimated HDEV for a set of phase data:

 phdev(x,1)

Reference

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July

2008 book at Handbook, and download it as NIST Special Publication 1065.

Code
Function to calculate the Hadamard deviation from phase data
phdev <- function (x, tau=1)
{
 N=length(x)
 s=0
 for (i in 1:(N-3))
 {
 s = s +(x[i+3] -3*x[i+2] +3*x[i+1] -x[i])^2
 }
 hv = s/(6*(tau^2)*(N-3))
 return (sqrt(hv))
}

Test Case

 Classic NBS Monograph 140 Annex 8.E frequency values from: B.E. Blair (Editor), Time and

Frequency: Theory and Fundamentals, NBS Monograph 140, Annex 8.E, p. 181, May 1974.

> nbs<-c(892,809,823,798,671,644,883,903,677)

> nbs

[1] 892 809 823 798 671 644 883 903 677

> nbsi<-diffinv(nbs)

> nbsi

 [1] 0 892 1701 2524 3322 3993 4637 5520 6423 7100

> phdev(nbsi,1)

 [1] 70.80607

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
http://www.wriley.com/NBS140Annex8E.pdf

 41

fhdev Calculate Hadamard Deviation for Frequency Data

Description

Function to calculate the estimated HDEV of a set of fractional frequency data at its basic sam-

pling interval.

Imports

 Package RobPer required.

Arguments

y The vector of fractional frequency data to be analyzed.

Return Value

The estimated Hadamard deviation for the frequency data at its basic sampling interval.

Example

 Find the estimated HDEV for a set of frequency data:

 fhdev(y)

Reference

W.J. Riley, Handbook of Frequency Stability Analysis. You can buy a printed copy of this July

2008 book at Handbook, and download it as NIST Special Publication 1065.

Code
Function to calculate the Hadamard deviation from freq data
fhdev <- function(y)
{
 N=length(y)
 s=0
 for (i in 1:(N-2))
 {
 s = s + (y[i+2] -2*y[i+1] +y[i])^2
 }
 hv=s/(6*(N-2))
 return (sqrt(hv))
}

Test Case

 Classic NBS Monograph 140 Annex 8.E frequency values from: B.E. Blair (Editor), Time and

Frequency: Theory and Fundamentals, NBS Monograph 140, Annex 8.E, p. 181, May 1974.

> nbs

[1] 892 809 823 798 671 644 883 903 677

> fhdev(nbs)

[1] 70.80607

http://www.stable32.com/Handbook.pdf
http://www.lulu.com/content/508588
https://www.nist.gov/publications/handbook-frequency-stability-analysis
http://www.wriley.com/NBS140Annex8E.pdf

 42

theo1 Calculate the Thêo1 Statistic for Phase Data

Description

Function to calculate the Thêo1 statistic for a set of phase data.

Arguments

x The vector of phase data to be analyzed.

tau The sampling interval of the phase data, seconds (default=1).

af The averaging factor for the analysis (must be even, default=2)

Return Value

The estimated value of the Thêo1 statistic for the phase data at a certain averaging factor.

Example

 Find Thêo1 for a set of phase data having a tau=1 second at an averaging factor of 2:

 fhdev(y)

Reference

D.A. Howe and T.K. Peppler, “Very Long-Term Frequency Stability: Estimation Using a Spe-

cial-Purpose Statistic”, Proceedings of the 2003 IEEE International Frequency Control Sympo-

sium, May 2003.

Code
Find Theo1 per Howe and Peppler (2003)
x = phase data vector (1 to N)
tau = data sampling interval
m = averaging factor (2 to N-1)
m must be even
Analysis tau = m*tau
Stride = 0.75*m*tau
theo1<-function(x, tau=1, m=2)
{
 # Initializations
 N-length(x)
 t1=0

 # Outer sum
 for(i in 1:(N-m))
 {
 sum=0
 # Inner sum
 for(d in 0:((m/2)-1))
 {
 s=(1/((m/2)-d))*((x[i]-x[i-d+(m/2)]+x[i+m]-x[i+d+(m/2)])^2)
 sum=sum+s
 }
 t1=t1+sum
 }

 # Scaling factor
 t1=t1/(0.75*(N-m)*(m*tau)^2)

 43

 # Return Theo1 deviation
 return (sqrt(t1))
}

Test Case

Test data of Appendix I of Reference:
> t

1] 1.00 2.50 0.65 -3.71 -3.30 1.08 0.50 2.20 4.68 3.29

Test results:

> theo1(t,1,4)

[1] 1.509405

> theo1(t,1,6)

[1] 1.412349

> theo1(t,1,8)

[1] 1.148758

 44

psd Calculate and Plot a Power Spectral Density

Description

Function to calculate and plot a power spectral density (PSD) for phase or frequency data.

Arguments

z The time series to be analyzed

span # of smoothing spans to use (default=10)

logx Flag to use log x scale (default=TRUE)

logy Flag to use log y scale (default=TRUE)

title Plot title (default=”PSD Plot”

Return Value

The requested PSD plot.

Example

 Plot the PSD for a set of phase data:

 psd(phase, span=10,logx=TRUE, logy=TRUE, title="Phase PSD Plot")

Code
Function to calculate and plot a power spectral density
for phase or frequency data
psd <- function(z, span=10, logx=TRUE, logy=TRUE, title="PSD Plot")
{
 s<-spectrum(z,span)
 freq<-s$freq
 psd<-2*s$spec

 45

 if(logx==FALSE & logy==FALSE)
 {
 plot(freq,psd,type="l",main=title)
 }
 else if(logx==FALSE & logy==TRUE)
 {
 plot(freq,log10(psd),type="l",main=title)
 }
 else if(logx==TRUE & logy==FALSE)
 {
 plot(log10(freq),psd,type="l",main=title)
 }
 else(logx==TRUE & logy==TRUE)
 {
 plot(log10(freq),log10(psd),type="l",main=title)
 }
}

 46

Appendix 3

Notes for padev() and fadev()

These functions calculate the Allan deviation at a single unity averaging factor. At that basic

sampling interval there is no difference between non-overlapping and overlapping samples, nor

between the Allan and Modified Allan deviations. The functions pavg() and favg() can be used

to average the phase or frequency data to a longer tau before applying padev() or fadev().

> # Save x0 data file

> x<-x0

> length(x)

[1] 4096

> # Calculate ADEV over a range

> # of octave averaging factors

> padev(x)

[1] 1e-11

> x<-pavg(x)

> length(x)

[1] 2048

> padev(x,2)

[1] 4.99267805585e-12

> x<-pavg(x)

> length(x)

[1] 1024

> padev(x,4)

[1] 2.50433298546e-12

> x<-pavg(x)

> length(x)

[1] 512

> padev(x,8)

[1] 1.24888717539e-12

Notice that the tau is entered for the averaged padev() calculations.

Repeat for frequency data

> y<-ptof(x0)

> length(y)

[1] 4095

> fadev(y)

[1] 1e-11

> y<-favg(y)

> length(y)

[1] 2047

> fadev(y)

[1] 4.99267805585e-12

> y<-favg(y)

> fadev(y)

[1] 2.50433298546e-12

> y<-favg(y)

> length(y)

[1] 511

> fadev(y)

[1] 1.24888717539e-12

But, for higher-confidence, it is better to use the entire data set and overlapping samples as im-

plemented in avari() of the ‘allanvar’ package and in poadev() and foadev().

The padev() and fadev() functions are used by the noise() generation function to set the desired

Allan deviation for their respective data type. They are also used by the bs() function to show

that quantity.

 47

Appendix 4

Examples of Noise Generation, Data Plots, Noise Identification and Basic Statistics

with the functions noise(), plot(), nid(), and bs()

W PM

x0<-noise(4096,0,1e-11,0,1)

plot(x0)

bs(x0)
write(x0,"C:\\Data\\x0.phd",1)

[1] Basic Statistics:

[1] File = x0

[1] Type = Phase

[1] Tau = 1

[1] # Points = 4096

[1] Max = 2.02978610909385e-11

[1] Min = -2.01314251491493e-11

[1] Span= 4.04292862400878e-11

[1] Mean = -8.26356594567044e-29

[1] Median = 4.70758166928985e-14

[1] MAD = 5.73682842157458e-12

[1] Std Dev = 5.72330213491854e-12

[1] Sigma = 9.99999999999999e-12

[1] nid = 2.01985990379316

[1] Alpha = 2.01985990379316

[1] Noise = W PM

F PM

x1<-noise(4096,1,1e-11,0,1) F PM

plot(x1)

bs(x1)
write(x1,"C:\\Data\\x1.phd",1)

[1] Basic Statistics:

[1] File = x1

[1] Type = Phase

[1] Tau = 1

[1] # Points = 4096

[1] Max = 5.84807189016316e-11

[1] Min = -5.62330868955754e-11

[1] Span= 1.14713805797207e-10

[1] Mean = -3.51577740975912e-28

[1] Median = 6.85181196368336e-13

[1] MAD = 1.38708603479839e-11

[1] Std Dev = 1.43574889402762e-11

[1] Sigma = 1e-11

[1] nid = 0.729755489755081

[1] Alpha = 0.729755489755081

[1] Noise = F PM

 48

RW PM

x2<-noise(4096,2,1e-11,0,1) RW PM

plot(x2)

bs(x2)
write(x2,"C:\\Data\\x2.phd",1)

[1] Basic Statistics:

[1] File = x2

[1] Type = Phase

[1] Tau = 1

[1] # Points = 4096

[1] Max = 6.47927717483002e-10

[1] Min = -4.47189694402041e-10

[1] Span= 1.09511741188504e-09

[1] Mean = -9.51670086404567e-27

[1] Median = -4.67813969398479e-11

[1] MAD = 2.52791718953365e-10

[1] Std Dev = 2.37408182839263e-10

[1] Sigma = 1e-11

[1] nid = -0.276641140000412

[1] Alpha = -0.276641140000412

[1] Noise = W FM

W FM

y0<-noise(4096,0,1e-11,1,1)

plot(y0)

bs(y0,1,1)
write(y0,"C:\\Data\\y0.frd",1)

[1] Basic Statistics:

[1] File = y0

[1] Type = Frequency

[1] Tau = 1

[1] # Points = 4096

[1] Max = 3.63859071683338e-11

[1] Min = -4.13911634846489e-11

[1] Span= 7.77770706529828e-11

[1] Mean = -1.96120527724863e-28

[1] Median = 1.29435902553715e-13

[1] MAD = 9.93182203459801e-12

[1] Std Dev = 1.00879385318981e-11

[1] Sigma = 1e-11

[1] nid = 1.9659025637474

[1] Alpha = -0.0340974362525981

[1] Noise = W FM

 49

F FM

y1<-noise(4096,1,1e-11,1,1)

plot(y1)

bs(y1,1,1)
write(y1,"C:\\Data\\y1.frd",1)

[1] Basic Statistics:

[1] File = y1

[1] Type = Frequency

[1] Tau = 1

[1] # Points = 4096

[1] Max = 7.49371347343171e-11

[1] Min = -1.04900962344573e-10

[1] Span= 1.79838097078891e-10

[1] Mean = -3.07898420209187e-28

[1] Median = -1.04051185404546e-13

[1] MAD = 2.25373829312755e-11

[1] Std Dev = 2.28232081099642e-11

[1] Sigma = 1e-11

[1] nid = 0.718287670833863

[1] Alpha = -1.28171232916614

[1] Noise = F FM

RW FM

y2 <-noise(4096,2,1e-11,1,1)
plot(y2)

bs(y2,1,1)
write(y2,"C:\\Data\\y2.frd",1)

[1] Basic Statistics:

[1] File = y2

[1] Type = Frequency

[1] Tau = 1

[1] # Points = 4096

[1] Max = 7.63263284355859e-10

[1] Min = -6.63158350087911e-10

[1] Span= 1.42642163444377e-09

[1] Mean = 6.91003326225927e-27

[1] Median = -1.93595507701568e-12

[1] MAD = 3.84900008281505e-10

[1] Std Dev = 3.38618639221366e-10

[1] Sigma = 1e-11

[1] nid = -0.290301177620439

[1] Alpha = -2.29030117762044

[1] Noise = RW FM

This table shows six examples of power law phase and frequency noise from W PM (a=2) to RW FM

(a=-2), where RW PM and W FM have the same a=0. The data plots are for their respective phase or

frequency data types, and Stable32 Stats results are shown to their right. The Basic Statistics listings

(with extra nid items) are in the panel below that, and show the same results. The bottom left panel of

each set shows the R commands used to generate the noise, plot and analyze it, and save it to a file.

 50

Appendix 5

Regression Analysis for Phase and Frequency Data

Frequency Offset

Data

Method R Code Remarks

Phase

Linear fit to slope
x(t)=a+bt, y(t)=b

t<=1:length(x)

lm(x~t)

Common

Average of 1
st
 differences

y(t)=[x(t+)-x(t)]/

f=mean(diff(x))

Endpoints
slope=(x[n]-x[1])/(n-1)

n=length(x)

f=(x[n]-x[1])/(n-1)
Match endpoints

Freq Arithmetic average (mean) f=mean(y) Most common

Frequency Drift

Phase

Quadratic fit
x(t)=a+bt+ct², where

y(t)=x'(t)=b+2ct,

slope=y'(t)=2c

t<=1:length(x)

t2<-t^2

lm(x~t+t2)

Most common

Average of 2
nd

 differences
y(t)=[x(t+)-x(t)]/,

slope=[y(t+)-y(t)]/ =

[x(t+2)-2x(t+)+x(t)]/

²

d=mean(diff(x,1,2)) May have numerical

precision problems

3-point fit
slope=4[x(n)-

2x(n/2)+x(1)]/(n)²

n=length(x)

d=4*(x[n]-

2*x[floor(n/2)]+x[1])/

((n*tau)^2)

Greenhall fit
4-point cumulative sum

estimator using start,

10%, 90% & end points

w=cumsum(x)

n=length(w)

d=-4*w[1]+

5*w[floor(n/10)]-

5*w[floor(9*n/10)]+4*w[n]

d=d*50/(3*n*n*n)

Freq Linear fit to slope
y(t)=a+bt, y’(t)=b

t<=1:length(y)

lm(y~t)
See example below

Bisection fit
slope=2 [y(2nd half) -

y(1st half)] / (n·t),

where n=# points

n=length(y)

h1<-y[1]:y[floor(n/2)]

h2<-y[floor(n/2)+1]:y[n]

m1=mean(h1)

m2=mean(h2)

d=2*(m2-m1)/(n*tau)

Uses averages of first

and last halves of data

Nonlinear Models for Aging Stabilization

Freq Log
y(t)=a·ln(bt+1)+c,

slope=y'(t)=ab/(bt+1)

t<=1:length(y)

> a=initial estimate

> b=initial estimate

> c=initial estimate

> nls(rafs ~

a*(log(b*t+1))+c,

start=list(a=a,b=b,c=c))

MIL-O-55310B

 51

Diffusion
y(t)=a+b(t+c)^½,

slope=y'(t)=½·b(t+c)^-½.

t<=1:length(y)

> a=initial estimate

> b=initial estimate

> c=initial estimate

> nls(rafs ~

a+b*((t+c)^0.5),

start=list(a=a,b=b,c=c))

Prewhitening Methods

Phase Remove Slope Calc slope (see above), then:
for(i in 1:length(x))

x[i]=x[i]-i*slope

Freq Remove Drift Calc drift (see above), then:
for(i in 1:length(y))

y[i]=y[i]-i*slope

Both Remove AR(1) fit

 z(t)=z(t+1) -
r(1)·z(t)

w=acf(z)

r1=w[1]

for(i in 1:length(z))

z[i]=z[i+1]-r1*z[i]

z is x or y.

r(1)=lag 1 autocorrela-

tion coefficient.

To plot frequency data with a regression line:

> plot(d,type="s",ylab="Freq")

> t<-1:length(d)

> fit<-lm(d~t)

> abline(fit,col="red")

 52

Appendix 6

R code for Frequency Stability Analysis Package

fsa.R

R Functions for Basic Frequency Stability Analysis
W.J. Riley
Hamilton Technical Services, Beaufort, SC 29907 USA
License: MIT
Version 1.0
May 18, 2020

Packages required
library(allanvar) # For avar() and avari()
library(RobPer) # For TK95()
library(zoo) # For rollapply()

Note that the code for the fsa.R functions does not include argument validation,
nor do they handle data with gaps.

Function to average phase data
pavg<-function(x,af=2)
{
 seed<-c(TRUE,rep(FALSE,af-1))
 cont<-rep(seed,ceiling(length(x)/af))[1:length(x)]
 return(x[which(cont)])
}

Function to average frequency data
favg<-function(data,af=2)
{
 return(rollapply(data,width=af,by=af,FUN=mean))
}

Function for phase to frequency conversion
ptof<-function(x,tau=1)
{
 return(diff(x)/tau)
}

Function for frequency to phase conversion
ftop<-function(y,tau=1)
{
 return(diffinv(y)*tau)
}

Function to generate power law noise
noise<-function(num,alpha,sigma,type=0,tau=1)
{
 z<-TK95(num,alpha)
 if(type==0) d<-padev(z,tau)
 else d<-fadev(z)
 z=(z/d)*sigma
 m=mean(z)
 z=z-m
 return(z)
}

Function to find the noise type using the lag 1 ACF method
nid<-function(z)
{
 nD=0 # Difference order
 # Save original data
 zz<-z
 # Calc lag 1 autocorrelation r1
 r1=acf(z,1, "cor",F)

 53

 r1=r1$acf[2]
 # Find d = r1/(1+r1)
 d=r1/(1+r1)
 # If d<0.25, must apply increment operator
 if(d>0.25)
 {
 while(d>=0.25)
 {
 # Take 1st differences
 z<-diff(z)
 nD=nD+1
 # Calc lag 1 autocorrelation r1
 r1=acf(z,1, "cor",F)
 r1=r1$acf[2]
 # Find d = r1/(1+r1)
 d=r1/(1+r1)
 }
 }
 # Calc alpha
 alpha=-2*d -2*nD +2
 # Restore original data
 z<-zz
 return (alpha)
}

Function to show basic statistics for phase or frequency data
bs <- function(z,type=0,tau=1)
{
 print("Basic Statistics:", quote=FALSE)
 txt=paste("File =", deparse(substitute(z)))
 print(txt, quote=FALSE)
 if(type==0)
 {
 print("Type = Phase", quote=FALSE)
 }
 else
 {
 print("Type = Frequency", quote=FALSE)
 }
 txt=paste("Tau =", tau)
 print(txt, quote=FALSE)
 txt=paste("# Points =", length(z))
 print(txt, quote=FALSE)
 txt=paste("Max =", max(z))
 print(txt, quote=FALSE)
 txt=paste("Min =", min(z))
 print(txt, quote=FALSE)
 txt=paste("Span=", max(z)-min(z))
 print(txt, quote=FALSE)
 txt=paste("Mean =", mean(z))
 print(txt, quote=FALSE)
 txt=paste("Median =", median(z))
 print(txt, quote=FALSE)
 txt=paste("MAD =", mad(z))
 print(txt, quote=FALSE)
 txt=paste("Std Dev =", sqrt(var(z)))
 print(txt, quote=FALSE)
 if(type==0) # Phase data
 {
 txt=paste("Sigma =", padev(z,tau))
 print(txt, quote=FALSE)
 # txt=paste("nid =", nid(z))
 # print(txt, quote=FALSE)
 alpha=nid(z)
 }
 else # Freq data
 {

 54

 txt=paste("Sigma =", fadev(z))
 print(txt, quote=FALSE)
 # txt=paste("nid =", nid(z))
 # print(txt, quote=FALSE)
 alpha=nid(z)-2
 }
 txt=paste("Alpha =", alpha)
 print(txt, quote=FALSE)
 if(alpha>1.5)
 {
 txt=paste("Noise = W PM")
 print(txt, quote=FALSE)
 }
 else if(alpha>0.5)
 {
 txt=paste("Noise = F PM")
 print(txt, quote=FALSE)
 }
 else if(alpha>-0.5)
 {
 txt=paste("Noise = W FM")
 print(txt, quote=FALSE)
 }
 else if(alpha>-1.5)
 {
 txt=paste("Noise = F FM")
 print(txt, quote=FALSE)
 }
 else
 {
 txt=paste("Noise = RW FM")
 print(txt, quote=FALSE)
 }
 plot(z)
}

Function to count outliers in phase or frequency data
co <- function(z, limit=5)
{
 # Find MAD
 m=mad(z)
 # Count outliers
 n=sum(z<(-m*limit))+sum(z>(m*limit))
 return (n)
}

Function to calculate the ADEV for phase data
padev <- function (x, tau=1)
{
 N=length(x)
 s=0
 for (i in 1:(N-2))
 {
 s = s + (x[i+2]-(2*x[i+1])+x[i])^2
 }
 av = s/(2*(tau^2)*(N-2))
 return (sqrt(av))
}

Function to calculate the ADEV for frequency data
fadev <- function(y)
{
 N=length(y)
 s=0
 for (i in 1:(N-1))
 {
 s = s + (y[i+1]-y[i])^2

 55

 }
 av=s/(2*(N-1))
 return (sqrt(av))
}

Function to calculate the overlapping Allan deviation from phase data
poadev <- function(x, tau=1, m=1)
{
 N=length(x)
 s=0
 for(i in 1:(N-2*m))
 {
 s = s + (x[i+2*m]-2*x[i+m]+x[i])^2
 }
 s = s/(2*m^2*(N-2*m)*tau^2)
 return (sqrt(s))
}

Function to calculate the overlapping Allan deviation from frequency data
foadev <- function(y, tau=1, af=1)
{
 x=ftop(y,tau)
 ad=poadev(x,tau,af)
 return (ad)
}

Function to calculate the overlapping Allan deviation from phase or data
over a range of octave averaging factors
adevrun <- function(z, type=0, tau=1)
{
 # If frequency data, convert it to phase data
 if(type==1)
 {
 x<-ftop(z)
 }
 else
 {
 x<-z
 }
 # Initializations
 N=length(x)
 af=1
 # Loop thru AFs up to limit, calculating ADEV
 # The maximum AF is floor(N/4)
 while(af<=floor(N/4))
 {
 ad=poadev(x,tau,af)
 print(paste0("AF= ",af," ADEV=",ad))
 af=af*2
 }
}

Function to calculate Modified Allan deviation
MVAR for phase data
Argument tau is basic data sampling interval
Each analysis tau is tau*m
where argument m is averaging factor 1 to N/3
pmdev<-function(x,tau=1,m=1)
{
 N=length(x)
 mvar=0
 # Outer loop
 for(j in 1:(N-3*m+1))
 {
 s=0
 # Inner loop
 for(i in j:(j+m-1))

 56

 {
 s=s+(x[i+(2*m)]-2*x[i+m]+x[i])
 }
 mvar=mvar+s^2
 }
 # Scaling
 mvar=mvar/(2*m^2*m^2*tau^2*(N-3*m+1))
 return (sqrt(mvar))
}

Function to calculate the Hadamard deviation for phase data
phdev <- function (x, tau=1)
{
 N=length(x)
 s=0
 for (i in 1:(N-3))
 {
 s = s +(x[i+3] -3*x[i+2] +3*x[i+1] -x[i])^2
 }
 hv = s/(6*(tau^2)*(N-3))
 return (sqrt(hv))
}

Function to calculate the Hadamard deviation for frequency data
fhdev <- function(y)
{
 N=length(y)
 s=0
 for (i in 1:(N-2))
 {
 s = s + (y[i+2] -2*y[i+1] +y[i])^2
 }
 hv=s/(6*(N-2))
 return (sqrt(hv))
}

Find Theo1 per Howe and Peppler (2003)
x = phase data vector (1 to N)
tau = data sampling interval
m = averaging factor (2 to N-1)
m must be even
Analysis tau = m*tau
Stride = 0.75*m*tau
theo1<-function(x, tau=1, m=2)
{
 # Initializations
 N=length(x)
 t1=0

 # Outer sum
 for(i in 1:(N-m))
 {
 sum=0
 # Inner sum
 for(d in 0:((m/2)-1))
 {
 s=(1/((m/2)-d))*((x[i]-x[i-d+(m/2)]+x[i+m]-x[i+d+(m/2)])^2)
 sum=sum+s
 }
 t1=t1+sum
 }

 # Scaling factor
 t1=t1/(0.75*(N-m)*(m*tau)^2)

 # Return Theo1 deviation
 return (sqrt(t1))

 57

}

Function to calculate and plot a power spectral density
psd <- function(z, span=10, logx=TRUE, logy=TRUE, title="PSD Plot")
{
 s<-spectrum(z,span)
 freq<-s$freq
 psd<-2*s$spec

 if(logx==FALSE & logy==FALSE)
 {
 plot(freq,psd,type="l",main=title)
 }
 else if(logx==FALSE & logy==TRUE)
 {
 plot(freq,log10(psd),type="l",main=title)
 }
 else if(logx==TRUE & logy==FALSE)
 {
 plot(log10(freq),psd,type="l",main=title)
 }
 else(logx==TRUE & logy==TRUE)
 {
 plot(log10(freq),log10(psd),type="l",main=title)
 }
}

 58

Appendix 7

Adding Frequency Stability Analysis Functionality to R with C++, Rcpp, and Rtools

Using C/C++ with R

C or C++ functions may be called from R to provide significantly faster execution. This can be an im-

portant advantage for core frequency stability analysis functions (e.g., variances) that involve nested

loops performed on large data arrays. This appendix briefly describes how that can be done for a Win-

dows R installation.

Rcpp and Rtools

The easiest way to use C/C++ code in R is with the Rcpp and Rtools tool chain. Rcpp supports calling

C++ from R, while Rtools compiles C++ code under R. The C++ code for the small functions usually

involved closely resembles plain C with the significant advantage of easier memory management, and

Rcpp is much easier to use than the older C interface. The current version 4.0.0 of R requires rtools40

which can be installed on a 64-bit Windows system with rtools40-x86_64.exe. As usual, one should in-

stall the latest version of R, RStudio and Rtools (see: https://cran.r-project.org/bin/windows/Rtools/ and

follow the instructions therein).

Then, the Rcpp/Rtools environment can be verified with the following on the R console command line

(see “Getting started with C++” in “High performance functions with Rcpp” at adv-r.had.co.nz):

> cppFunction('int add(int x, int y, int z)

+ {

+ int sum = x + y + z;

+ return sum;

+ }')

> add(1,2,3)

[1] 6

The approach shown above using cppFunction() is fine for a small piece of C++ code, but it is more

common for a larger project to call C++ code from a separate .cpp source file that begins with:

#include <Rcpp.h>

Using namespace Rcpp;

// [[Rcpp::export]]

and is brought into R using sourceCpp(“filename.cpp”).

For example, this C++ code in size.cpp calculates the size of a data vector:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

double size(NumericVector x)

{

 return x.size();

}

which can be compiled and run in R with:

https://cran.r-project.org/bin/windows/Rtools/
../Documents/My%20Documents/adv-r.had.co.nz

 59

> library(Rcpp)

>

> sourceCpp("C:\\R\\size.cpp")

>

> d<-c(1:100)

> length(d)

[1] 100

> size(d)

[1] 100

The R, RStudio, Rcpp and Rtools installation is working nicely and one can now quite easily write,

compile, and run C++ functions in R to perform frequency stability analysis. In particular, these func-

tions can leverage existing C code to obtain better performance along with the convenience of R.

Timing Function Execution

The time required for a function to execute in R can be determined by successive calls to the

Sys.time() function:

t1<-Sys.time()

some_function_to_be_timed()

t2<-Sys.time()

t2-t1

where the code needs to be executed as a block. For example, we can generate 10,000 points of W FM

noise phase data using the noise() function from the fsa.R package with:

> d<-noise(10000,0,1,0,1)

 and time the execution of the theo1() function from the fsa.R package with:

> t1<-Sys.time()

> theo1(d,1,5000)

[1] 0.0007709487

> t2<-Sys.time()

> t2-t1

Time difference of 2.884525 secs

We can compare that execution time with the same Thêo1 function (named theo instead of theo1) im-

plemented in C++ code as follows:

 60

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]

double theo(NumericVector x, double tau, int m)
{
 // Note: x is 0-based
 // Local variables
 int i; // Outer index
 int d; // Inner index
 int N; // # phase data points
 double t1; // Theo1
 double sum; // Inner sum
 double s; // Partial sum

 // Initializations
 N=x.size();
 t1=0;

 // Outer sum
 for(i=1; i<=(N-m); i++)
 {
 sum=0;
 // Inner sum
 for(d=0; d<=((m/2)-1); d++)
 {
 s=(x[i-1]-x[i-d+(m/2)-1]+x[i+m-1]-x[i+d+(m/2)-1]);
 sum+=(s*s/((m/2)-d));
 }
 t1+=sum;
 }

 // Scaling factor
 t1/=(0.75*(N-m)*m*m*tau*tau);

 // Return Theo1 deviation
 return sqrt(t1);
}

The theo() function is compiled with:

> sourceCpp("C:\\R\\theo.cpp")

and executed, with timing, with:

> t1<-Sys.time()

> theo(d,1,5000)

[1] 0.0007709487

> t2<-Sys.time()

> t2-t1

Time difference of 0.01994205 secs

The R version of Thêo1 takes a significant 2.88 seconds to execute while the C++ version takes only

0.02 second, clearly demonstrating the big advantage of using C++ to implement lengthy functions in R.

As a final example, here is a C++ function that can be used with R to calculate the Total deviation from

phase data. Note that any needed bias correction must be applied separately.

 61

/***/
/* */
/* totdev() */
/* */
/* Function to calculate TOTDEV using doubly reflected phase data */
/* C++ code for use with the R statistical computing environment */
/* */
/* Parameters: NumericVector x = phase data (double) */
/* double tau = data sampling interval */
/* int af = analysis averaging factor */
/* */
/* Return: double = TOTDEV */
/* or -1 if bad argument error */
/* or -2 if memory alloc error */
/* or -3 if no result error */
/* or -4 if negative variance error */
/* */
/* Install: sourceCpp("path to tc.cpp") */
/* */
/* Call: totdev(x, tau, af) */
/* */
/* Notes: 1. Adapted for C++ from FrequenC.DLL TotvarCalc() */
/* for use with R. */
/* 2. Function signature changed. */
/* 3. Windows/WIN32 code/style removed. */
/* 4. Phase data vector w/o start, end or # points. */
/* 5. No gap handling. */
/* 6. No progress indicator. */
/* 7. Calculation is done entirely with a new array. */
/* that is deleted after the function closes. */
/* 8. The phase data need NOT be endmatched before */
/* calling this function. */
/* */
/* Reference: D.A. Howe and C.A. Greenhall, "Total Variance: */
/* A Progress Report on a New Frequency Stability */
/* Characterization", Proc. 29th PTTI Meeting, */
/* December 1997. */
/* */
/* Revision record: */
/* 06/03/20 Adapted from TotvarCalc() of FrequenC.DLL */
/* */
/* (c) Copyright 1997-2020 Hamilton Technical Services License: MIT */
/* */
/***/

// Headers
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]

// TOTDEV Calculation
double totdev(NumericVector x, double tau, int af)
{

 62

 // Local variables
 int i; // Index
 int j; // Auxilary index
 int n; // # points (in full vector x)
 int c=0; // # analysis points

 double *p=NULL; // TOTVAR phase array pointer
 double s=0.0; // TOTVAR summation
 double e; // Phase data value at edge of reflection
 double totdev; // Total deviation

 // Initializations
 n=x.size(); // # phase data points = N

 // Check arguments
 // AF must be >= 1, tau must be > 0, Max AF is N-1
 if((af<1) || (tau<=0.0) || (n<af+1))
 {
 return -1.0; // Bad argument error
 }

 // Allocate a new "virtual" phase data array to size 3N-4, where N
 // is the # of phase data points. This virtual array is the result
 // of extension by reflection about both endpoints. N-2 reflected
 // points are added at both ends of the original phase data.
 p=new(std::nothrow) double [3*n-4];
 if(p==NULL)
 {
 return(-2.0); // Error - memory allocation failed
 }

 // Note that in the referenced paper the index of the virtual phase data
 // array goes from 3-N (a negative number) to 2N-2 (a positive number),
 // with the original data having indices from 1 to N. Our indices start at
 // 0 and go to 3N-5. The lower reflected data has indices from 0 to N-3.
 // The original data in the middle of the virtual array has indices from
 // N-2 to 2N-3. The upper reflected data has indices from 2N-2 to 3N-5.

 // Copy original phase data array x[] to (headerless) working array p[]
 // i is the index into the virtual array p[]. j is the variable part
 // of the index into the original phase data array x[].
 j=0;
 for(i=n-2; i<2*n-2; i++)
 {
 p[i]=x[j];
 j++;
 }

 // Fill the lower reflected phase data
 // These values are twice the first phase data point minus the particular
 // data point value to be reflected.
 j=0;
 e=2*p[n-2];

 63

 for(i=0; i<n-2; i++)
 {
 p[i]=e-p[2*n-4-j];
 j++;
 }

 // Fill the upper reflected phase data
 // These values are twice the last phase data point minus the particular
 // data point value to be reflected.
 j=0;
 e=2*p[2*n-3];

 for(i=2*n-2; i<3*n-4; i++)
 {
 p[i]=e-p[2*n-4-j];
 j++;
 }

 // Calc TOTVAR - See Eq (3) of Reference
 for(i=n-1; i<2*n-3; i++)
 {
 // Sum 2nd differences squared
 s+=(p[i-af]-2*p[i]+p[i+af])*(p[i-af]-2*p[i]+p[i+af]);
 c++;
 }

 // Scale result - See Eq (3) of Reference
 if(c)
 {
 s/=(tau*tau*af*af*2*c);
 }
 else
 {
 return -3.0; // No results error
 }

 // Find TOTDEV
 if(s>0.0)
 {
 totdev=sqrt(s);
 }
 else
 {
 return 4.0; // Negative variance error
 }

 // Free memory
 delete [] p;

 return(totdev); // Return Total deviation
}

/***/

